句法分析学习笔记

本文记录了句法分析的学习过程,包括PCFG的概念、代码实现和难点,以及依存句法分析和语义依存分析的重要性。还提到了在实际操作中遇到的 stanford-parser 安装问题及关键短语抽取的递归句法树理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
句法分析能够帮助我们更好的理解句子,说白了就是从语法的角度来理解句子的含义。

句法分析难点与方法学习笔记:

在这里插入图片描述
此张PPT主要就是说明了由于中文的特性,使得中文的句法分析成熟度不高,较于词法分析的成熟度低。
在这里插入图片描述
此张PPT主要在说树库起到的作用,有了树库才有统计学应用于句法分析,即PCFG。
而树库就是用来给候选树打分的基础,有了大规模树库才能够对正确的句法树打一个高分值,而不合理的句法树则会得一个低分,就类似于CRF给NER和词性标注打分一样。

PCFG学习笔记:

在这里插入图片描述
主要就是说明PCFG的组成结构,是如何给句子打分的,学习起来没什么难度。
在这里插入图片描述

<think>好的,我现在需要帮用户寻找关于NLP(自然语言处理)的学习资料和总结。用户提到了“NLP 学习 笔记 资料 教程”,所以我要从提供的引用中提取相关信息,并按照系统级指令的格式来组织回答。 首先,查看用户提供的引用内容。引用[1]提到NLP环境搭建和常用开发软件,但具体使用不多,可能需要联系作者获取更多教程。引用[2]是一个详细的视频教程,包含15个小时的内容,覆盖深度学习、神经网络、Pytorch、RNN等,还有课件和代码资料。引用[3]是关于概率上下文无关文法(PCFGs)的学习笔记,提到有88%的精度。引用[4]是黑马程序员的Pytorch基础知识笔记,涉及autograd和tensor操作。 接下来,需要整理这些信息,分门别类地呈现给用户。系统级指令要求结构清晰,分步骤解答,所以可以按教程视频、核心知识点、实战案例、学习建议等部分来组织。同时,要确保行内数学公式用$...$,独立公式用$$...$$,但当前引用中没有涉及数学公式,所以可能不需要处理这部分。 然后,生成相关问题。根据用户的需求,可能对教程资源、核心概念、实战应用、学习路径优化等感兴趣,所以可以围绕这些方面提出问题。 需要确保回答中的引用标识正确,例如在提到视频教程时加上[^2],提到PCFGs时加上[^3],环境搭建部分加上[^1],实战代码示例用引用[4]。 最后,检查是否符合所有要求:中文回答、正确引用、LaTeX格式(如果有的话)、相关问题列表。当前引用中没有数学公式,所以LaTeX部分可能不需要调整。</think>### NLP(自然语言处理)学习资料与教程总结 #### 1. **系统化视频教程** 推荐 **《15小时彻底搞懂NLP自然语言处理》**(2021最新版),内容涵盖: - 深度学习与神经网络基础 - PyTorch框架入门与实践 - RNN(循环神经网络)在NLP中的应用 - 配套课件、代码及讲义(代码地址和讲义见引用内容) 适合系统学习,尤其适合希望结合理论与实战的学习者。 #### 2. **核心知识点与模型** - **概率上下文无关文法(PCFGs)**: 用于句法分析,通过概率模型提升解析精度(约88%),依赖关系建模是关键。 - **神经网络基础**: 包括神经元、感知机、多层网络等,是理解NLP模型的基石[^2]。 #### 3. **实战工具与环境搭建** - **PyTorch基础**: Tensor操作与自动求导(`autograd`)是核心,例如: ```python y = torch.ones(2, 2, requires_grad=True) z = y + 2 # 自动追踪计算图 ``` 通过此类代码可深入理解梯度传播机制[^4]。 - **开发环境**: 需配置Python、PyTorch及相关NLP库(如NLTK、spaCy),具体教程可联系引用[1]作者获取[^1]。 #### 4. **学习建议** - **从基础到进阶**:先掌握神经网络和PyTorch,再学习RNN、Transformer等模型。 - **结合项目实践**:通过句法分析(如PCFGs)、文本分类等任务巩固知识[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值