RSPrompter: Learning to Prompt for Remote Sensing Instance Segmentation based on Visual Foundation Model
北航、上海人工智能实验室
https://kyanchen.github.io/RSPrompter
0.简介
这篇工作尝试将Meta的SAM迁移到遥感实例分割任务上,需要在遥感数据集上微调;相比SAM交互式的分割(基于不同的Prompt),这篇工作提出自动生成prompt,但是学习到如何自动生成prompt的过程似乎依赖训练数据集,也就是说:模型能识别的类别局限于所有的训练类别。
1.动机:
Segment Anything需要prompt,prompt类型、位置和数量影响SAM效果
SAM缺乏语义信息
2.现有的将SAM应用于实例分割的思路
3.本文的思路
针对具体的prompter设计,与Mask-RCNN和DETR的思想相近,作者提出了Anchor-based prompter和query-based-prompter,这里要注意的是:在SAM中我们理解的prompt有点、bbox、文本等具体形式(“显式”prompt),而prompter生成的prompt是一系列向量(“隐式”prompt)
作者在WHU、NWPU、SSDD数据集上进行了实验
WHU “建筑物提取”数据集中的航空图像子集。包含 8188 个大小为 512×512 像素的非重叠 RGB 图像。空间分辨率范围为 0.0075m 至 0.3m。指定 4736 张图像为训练集,1036 张图像为验证集,2416 张图像为测试集。
NWPU目标检测数据集。包括飞机、船舶、储罐、棒球场、网球场、篮球场、地面田径场、港口、桥梁和车辆十个类别。715 张光学遥感图像,空间分辨率为 0.5-2m;以及来自 Vaihingen 数据集的 85 张全色锐化彩色红外图像,空间分辨率为 0.08m。80% 用于训练,20% 用于测试。
SAR船舶检测数据集。包含1160张分辨率范围为1米至15米的SAR图像和2540个船舶实例。80% 用于训练,20% 用于测试。
4.自己的动手测试


