【信息论】信息论基础知识

以下是我期末考试前整理的一些信息论基本知识,免费分享给大家

信息论研究的目的:有效性、可靠性、保密性

一、度量信息的几个量

  1. 某个符号出现的概率: p i p_i pi
  2. 自信息量: − log ⁡ 2 p -\log_2p log2p
  3. 平均自信息量(熵): ∑ i = 1 N − p i log ⁡ 2 p i \sum_{i=1}^{N} -p_i\log_2p_i i=1Npilog2pi
  4. 联合自信息量: − log ⁡ 2 p ( i , j ) -\log_2p(i,j) log2p(i,j)
  5. 平均联合自信息量: ∑ i = 1 N ∑ j = 1 M − p ( i , j ) log ⁡ 2 p ( i , j ) \sum_{i=1}^{N}\sum_{j=1}^{M} -p(i,j)\log_2p(i,j) i=1Nj=1Mp(i,j)log2p(i,j)
  6. 条件自信息量: − log ⁡ 2 p ( i ∣ j ) -\log_2p(i|j) log2p(ij)
  7. 平均条件自信息量: − ∑ i = 1 N ∑ j = 1 M p ( i , j ) log ⁡ 2 p ( i ∣ j ) -\sum_{i=1}^{N}\sum_{j=1}^{M} p(i,j)\log_2p(i|j) i=1Nj=1Mp(i,j)log2p(ij)
  8. 互信息量: log ⁡ 2 ( p ( i , j ) p ( i ) p ( j ) ) \log_2(\frac{p(i,j)}{p(i)p(j)}) log2(p(i)p(j)p(i,j))
  9. 平均互信息量: ∑ i = 1 N ∑ j = 1 M p ( i , j ) log ⁡ 2 ( p ( i , j ) p ( i ) p ( j ) ) \sum_{i=1}^{N}\sum_{j=1}^{M} p(i,j)\log_2(\frac{p(i,j)}{p(i)p(j)}) i=1Nj=1Mp(i,j)log2(p(i)p(j)p(i,j))
  10. 互信息量对称性: I ( x i ; y j ) = I ( y j ; x i ) I(x_i;y_j) = I(y_j;x_i) I(xi;yj)=I(yj;xi)
  11. 条件互信息量: I ( x i ; y j ∣ z k ) = log ⁡ 2 ( p ( x i ∣ y j z k ) p ( x i ∣ z k ) ) I(x_i;y_j|z_k)=\log_2(\frac{p(x_i|y_jz_k)}{p(x_i|z_k)}) I(xi;yjzk)=log2(p(xizk)p(xiyjzk))
  12. 二对一的互信息量: I ( x i ; y j z k ) = I ( x i ; z k ) + I ( x i ; y j ∣ z k ) I(x_i;y_jz_k)= I(x_i;z_k)+I(x_i;y_j|z_k) I(xi;yjzk)=I(xi;zk)+I(xi;yjzk)

注意⚠️:

  • 随机事件的不确定度在数量上等于它的自信息量
  • 互信息量可正、可负、可为零
  • 互信息量: I ( x i ; y j ) = I ( x i ) − I ( x i ∣ y j ) = I ( x i ) + I ( y j ) − I ( x i , y j ) I(x_i;y_j) = I(x_i)-I(x_i|y_j) = I(x_i)+I(y_j)-I(x_i,y_j) I(xi;yj)=I(xi)I(xiyj)=I(xi)+I(yj)I(xi,yj)
  • 信源熵的性质(1):非负性、极值性、对称性
  • 信源熵的性质(2):条件熵不大于信源熵、条件越多熵越小、联合熵小于熵之和
  • 信息熵的性质(3):拓展性、确定性、可加性、上凸性

二、证明常用到的几个公式

  1. H ( X Y ) = H ( X ) + H ( Y ∣ X ) = H ( Y ) + H ( X ∣ Y ) \color{fuchsia}{H(XY) = H(X)+H(Y|X)=H(Y)+H(X|Y)} H(XY)=H(X)+H(YX)=H(Y)+H(XY)

  2. H ( X ∣ Y ) ≤ H ( X ) ; H ( X ∣ Y Z ) ≤ H ( X ∣ Y ) ; H ( X Y ) ≤ H ( X ) + H ( Y ) H(X|Y)\le H(X);H(X|YZ)\le H(X|Y);H(XY)\le H(X)+H(Y) H(XY)H(X);H(XYZ)H(XY);H(XY)H(X)+H(Y)

  3. I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) = H ( X ) + H ( Y ) − H ( X Y ) I(X;Y) = H(X)-H(X|Y) = H(Y)-H(Y|X) = H(X)+H(Y)-H(XY) I(X;Y)=H(X)H(XY)=H(Y)H(YX)=H(X)+H(Y)H(XY)

  4. I ( X ; Y , Z ) = H ( X ) − H ( X ∣ Y , Z ) = H ( Y , Z ) − H ( Y , Z ∣ X ) I(X;Y,Z) = H(X)-H(X|Y,Z) = H(Y,Z)-H(Y,Z|X) I(X;Y,Z)=H(X)H(XY,Z)=H(Y,Z)H(Y,ZX)

  5. I ( X ; Y ∣ Z ) = H ( X ∣ Z ) − H ( X ∣ Y , Z ) = H ( Y ∣ Z ) − H ( Y ∣ X , Z ) I(X;Y|Z) = H(X|Z)-H(X|Y,Z) = H(Y|Z)-H(Y|X,Z) I(X;YZ)=H(XZ)H(XY,Z)=H(YZ)H(YX,Z)

  6. 数据处理定理: I ( X ; Y ) ≥ I ( X ; Z ) ; I ( X ; Y ) ≥ I ( X ; Y ∣ Z ) I(X;Y) \ge I(X;Z);I(X;Y) \ge I(X;Y|Z) I(X;Y)I(X;Z);I(X;Y)I(X;YZ)

  7. N次拓展(无记忆信源): H ( X N ) = N H ( X ) H(X^N)=NH(X) H(XN)=NH(X)

  8. 有记忆信源: H ( X 2 ∣ X 1 ) ≤ 1 2 H ( X 2 X 1 ) ≤ H ( X ) ; 1 N H ( X N ) ≤ 1 N − 1 H ( X N − 1 ) \color{fuchsia} H(X_2|X_1) \le \frac{1}{2}H(X_2X_1) \le H(X) ; \frac{1}{N}H(X^N) \le \frac{1}{N-1}H(X^{N-1}) H(X2X1)21H(X2X1)H(X);N1H(XN)N11H(XN1)

注意⚠️:

  • H(X|Y):疑义度(已知Y了,但还有不知道X的部分)。即因信道有扰,X丢失的平均信息量,又叫损失熵
  • H(Y|X):散步度/扩散度,信道产生的假平均信息。又叫噪声熵
  • 互信息的性质(1):非负性、极值性、对称性
  • 互信息的性质(2):上凸性(给定信道转移条件,有最大值)、下凸性(给定信源概率分布,有最小值)
  • 互信息的性质(3):可加性(互信息可分步获得)

三、连续熵

  1. 均匀分布连续熵: log ⁡ 2 ( b − a ) \log_2(b-a) log2(ba)
  2. 高斯信源连续熵: log ⁡ 2 ( 2 π e σ 2 ) \log_2(\sqrt{2\pi e \sigma^2}) log2(2πeσ2 )
  3. 指数分布连续熵: log ⁡ 2 ( m e ) \log_2(me) log2(me)
  4. 拉普拉斯分布连续熵: log ⁡ 2 ( 2 e λ ) \log_2(\frac{2e}{\lambda}) log2(λ2e)

注意⚠️:

  • 连续熵可为负值
  • 连续信源最大熵由条件而定;离散信源最大熵出现于等概分布
  • 最大熵定理:
    1. 限峰值功率的最大熵定理——均匀分布
    2. 限平均功率的最大熵定理——高斯分布
    3. 限均值的最大熵定理——指数分布

四、马尔可夫过程/链

  1. 转移矩阵:由 p ( j ∣ i ) p(j|i) p(ji)组成,表示从i状态转移到j状态的条件概率
  2. 状态平衡方程:$EP = E,\quad E={P(E_i)} , 转 移 发 生 一 段 时 间 之 后 , 各 个 状 态 出 现 的 概 率 为 ,转移发生一段时间之后,各个状态出现的概率为 P(E_i)$
  3. 马尔可夫信源熵:$H_{\infty}(X) = H_{m+1}(X)=\sum_{i=1}{qm}P(E_i) \sum_{j=1}^{q}p(a_j|E_i)\log(\frac{1}{p(a_j|E_i)}) $
  4. 对🐟一般有记忆信源的每个符号的平均信息量: H m ( X ) = 1 m H ( X 1 X 2 ⋯ X m ) H_m(X)=\frac{1}{m}H(X_1X_2 \cdots X_m) Hm(X)=m1H(X1X2Xm)
  5. 马尔可夫信源的性质:完备性、互斥性

五、信源编码

  1. 唯一可以码存在的充要条件 K r a f t Kraft Kraft不等式:$\sum_{i=1}^n r^{-K_i} \le 1 $
  2. 定长非奇异码一定是即时码
  3. 即时码树图构造法:码符号集的各个码字不出现其他码字的根上,即每个码字都应该是叶节点
  4. 唯一可译码的判断方法:Sardinas-Patterson判断法(一层一层分出尾随后缀)
  5. 最优码: H ( X ) = H r ( X ) l o g 2 r ; L o p t = c e i l ( H r ( X ) ) H(X) = H_r(X) log_2r ; \quad L_{opt} = ceil(H_r(X)) H(X)=Hr(X)log2r;Lopt=ceil(Hr(X))
  6. 相对熵: η = H ∞ ( X ) H 0 ( X ) \eta = \frac{H_\infty(X)}{H_0(X)} η=H0(X)H(X)
  7. 冗余度: E = 1 − η E = 1- \eta E=1η
  8. 内熵(信息变差): H ∞ ( X ) − H 0 ( X ) H_\infty(X)-H_0(X) H(X)H0(X)
  9. 编码效率: η c = H ( U ) K ‾ log ⁡ 2 r \eta_c = \frac{H(U)}{\overline K \log_2r} ηc=Klog2rH(U)
  10. 最佳定长编码效率: η c = H ( U ) H ( U ) + ε \eta_c = \frac{H(U)}{H(U)+\varepsilon} ηc=H(U)+εH(U)
  11. 差错率: P ( e ) ≤ σ 2 L ε 2 P(e) \le \frac{\sigma^2}{L \varepsilon^2} P(e)Lε2σ2
  12. 哈夫曼编码:概率表降序排列、递归:大为1小为0生成哈夫曼树、逆向行程得到哈夫曼编码
  13. 香农编码
  14. 费诺编码:根据降序概率表二分得到码表
  15. 卷积码:一种非分组码
  16. 卷积码译码:最大似然译码(维特比译码)

注意⚠️:

  • 满足 K r a f t Kraft Kraft不等式的编码方案不一定是唯一可译码,但不满足的一定不是唯一可译码
  • 香农编码考试不作要求
  • 卷积码、汉明码更详细的介绍可以参考我的其他博客

六、信道

  1. 信息传输速率: R = n L ∗ l o g 2 r R = nL*log_2r R=nLlog2r
  2. 香农公式: C t = C T = 1 / 2 l o g ( 1 + S N R ) 1 / f s = B l o g ( 1 + S N R ) C_t = \frac{C}{T} = \frac{1/2log(1+SNR)}{1/fs} = Blog(1+SNR) Ct=TC=1/fs1/2log(1+SNR)=Blog(1+SNR)
  3. 对称信道:行列元素相同
    • 信源等概分布的时候达到信道容量
  4. 准对称性信道:行元素相同
    • 信源等概分布的时候达到信道容量
  5. 二元删除信道:一种准对称信道
    • 信源等概分布的时候达到信道容量
  6. 无损无噪信道:输入输出一一对应
    • C = H ( X ) C = H(X) C=H(X)
  7. 无损有噪信道:每个输出有唯一输入与之对应(少入多出)
    • C = H ( X ) C = H(X) C=H(X)
  8. 有损无噪信道:每个输入有唯一输出与之对应(多入少出)
    • C = H ( Y ) C = H(Y) C=H(Y)
  9. 香农极限: lim ⁡ W → ∞ C t ≈ 1.443 P N 0 \lim_{W \to \infty} C_t \approx 1.443 \frac{P}{N_0} limWCt1.443N0P

七、信息率失真函数

  1. 失真度:d

  2. 失真度函数: d ( a i , a j ) d(a_i,a_j) d(ai,aj)

  3. 平均失真度: d ‾ = E ( d ) = ∑ i , j p ( x i ) p ( y j ∣ x i ) d ( a i , b j ) \overline d = E(d) = \sum_{i,j} p(x_i)p(y_j|x_i)d(a_i,b_j) d=E(d)=i,jp(xi)p(yjxi)d(ai,bj)

  4. 保真度准则: d ‾ < D \overline d<D d<D

  5. 信息率失真函数: R ( D ) = min ⁡ { p ( j ∣ i ) } ∈ P ( D ) I ( X ; Y ) R(D) = \min_{\{p(j|i)\} \in P(D)} I(X;Y) R(D)=min{p(ji)}P(D)I(X;Y)

  6. 满足保准度准则的所有试验信道: P ( D ) P(D) P(D)

  7. 汉明失真: d ( a i , a j ) = { 0 , a i = a j 1 , a i ≠ a j d(a_i,a_j)=\begin{cases}0,a_i=a_j \\ 1, a_i \ne a_j \end{cases} d(ai,aj)={0,ai=aj1,ai=aj

注意⚠️:

  • 信息率失真函数的物理意义:给定信源和失真度,找到一种信息量容许压缩的最小值
  • 香农第一定理:无失真信源编码R>H(X)
  • 香农第二定理:信道编码R<C
  • 香农第三定理:限失真信源编码R<R(D)

八、加密技术

  1. 仿射密码:加性密码+乘性密码,一种单表密码
  2. 线性反馈移位加密:m序列,伪随机码
  • 2
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CONTENTS Contents v Preface to the Second Edition xv Preface to the First Edition xvii Acknowledgments for the Second Edition xxi Acknowledgments for the First Edition xxiii 1 Introduction and Preview 1.1 Preview of the Book 2 Entropy, Relative Entropy, and Mutual Information 2.1 Entropy 2.2 Joint Entropy and Conditional Entropy 2.3 Relative Entropy and Mutual Information 2.4 Relationship Between Entropy and Mutual Information 2.5 Chain Rules for Entropy, Relative Entropy,and Mutual Information 2.6 Jensen’s Inequality and Its Consequences 2.7 Log Sum Inequality and Its Applications 2.8 Data-Processing Inequality 2.9 Sufficient Statistics 2.10 Fano’s Inequality Summary Problems Historical Notes v vi CONTENTS 3 Asymptotic Equipartition Property 3.1 Asymptotic Equipartition Property Theorem 3.2 Consequences of the AEP: Data Compression 3.3 High-Probability Sets and the Typical Set Summary Problems Historical Notes 4 Entropy Rates of a Stochastic Process 4.1 Markov Chains 4.2 Entropy Rate 4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph 4.4 Second Law of Thermodynamics 4.5 Functions of Markov Chains Summary Problems Historical Notes 5 Data Compression 5.1 Examples of Codes 5.2 Kraft Inequality 5.3 Optimal Codes 5.4 Bounds on the Optimal Code Length 5.5 Kraft Inequality for Uniquely Decodable Codes 5.6 Huffman Codes 5.7 Some Comments on Huffman Codes 5.8 Optimality of Huffman Codes 5.9 Shannon–Fano–Elias Coding 5.10 Competitive Optimality of the Shannon Code 5.11 Generation of Discrete Distributions from Fair Coins Summary Problems Historical Notes CONTENTS vii 6 Gambling and Data Compression 6.1 The Horse Race 159 6.2 Gambling and Side Information 164 6.3 Dependent Horse Races and Entropy Rate 166 6.4 The Entropy of English 168 6.5 Data Compression and Gambling 171 6.6 Gambling Estimate of the Entropy of English 173 Summary 175 Problems 176 Historical Notes 182 7 Channel Capacity 183 7.1 Examples of Channel Capacity 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值