【高等数学】矩阵的初等变换和行列式的初等变换

矩阵的初等变换和行列式的初等变换

在线性代数当中,初等变换可谓算得上最重要的一种运算了,然而矩阵的初等变换和行列式的初等变换却常常容易混淆,本文的目的是把这几个概念厘清:矩阵、行列式、初等变换、初等矩阵、矩阵的初等变换、行列式的初等变换。

一、矩阵和行列式
  • 矩阵是一张数表,通常用中括号包起来:

A 3 × 4 = [ 1 0 0 1 0 2 0 2 0 0 3 3 ] \mathbf A_{3\times4}=\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 3 & 3 \end{bmatrix} A3×4= 100020003123

上面是一个3行4列的矩阵。

  • 行列式是一个,通过对方阵进行运算得到的数:

d e t A = ∣ 1 0 0 0 1 0 0 0 2 ∣ = 2 det \mathbf A=\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 2 detA= 100010002 =2

矩阵的行数和列数可以不相等,而行列式的行数和列数必须相等。

二、初等变换和初等矩阵

所谓初等变换就是矩阵最基本的三种变换,初等矩阵是这三种变换对应的矩阵表示。

初等变换分为行初等变换和列初等变换。二者的区别在于放在被运算的矩阵 A \mathbf A A的左边还是右边。

三种初等变换,以及对应的初等矩阵:

  1. 交换:将i行和j行交换,对应的初等矩阵就是将单位矩阵的i行和j行交换
    E i j = [ 1 0 0 0 0 1 0 1 0 ] \mathbf E_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} Eij= 100001010

  2. 倍乘:将i行的每个数乘以c,
    E i ( c ) = [ 1 0 0 0 c 0 0 0 1 ] \mathbf E_{i}(c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix} Ei(c)= 1000c0001

  3. 乘加:将i行的每个数乘以c再加到j行,
    E i j ( c ) = [ 1 0 0 0 1 0 0 c 1 ] \mathbf E_{ij}(c)=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{bmatrix} Eij(c)= 10001c001

现在来演示一下:
E i j A = [ 1 0 0 0 0 1 0 1 0 ] × [ 1 0 0 1 0 2 0 2 0 0 3 3 ] = [ 1 0 0 1 0 0 3 3 0 2 0 2 ] \mathbf E_{ij} \mathbf A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 2 & 0 & 2 \end{bmatrix} EijA= 100001010 × 100020003123 = 100002030132
如果初等矩阵放在A的右边就是列变换。

三、矩阵的初等变换和行列式的初等变换

1. 矩阵的初等变换是保持等价关系

2. 行列式的初等变换是保持等值关系

矩阵的初等变换方法在上文已经说清楚了。

行列式的初等变换规则:

  1. 交换: d e t    E i j A = − d e t    A det\; \mathbf E_{ij} \mathbf A = -det \; \mathbf A detEijA=detA
  2. 倍乘: d e t    E i ( c ) A = c   d e t    A det \; \mathbf E_i(c) \mathbf A =c \, det \mathbf \; \mathbf A detEi(c)A=cdetA
  3. 乘加: d e t    E i j ( c ) A = d e t    A det \; \mathbf E_{ij}(c) \mathbf A = det \mathbf \; \mathbf A detEij(c)A=detA
四、数乘和倍乘
  • 对于矩阵而言:

数乘: k A k \mathbf A kA ,即将 A \mathbf A A中的每一个元素都乘以k

倍乘: E i ( c ) A \mathbf E_{i}(c) \mathbf A Ei(c)A,即将 A \mathbf A A的第i行的每一个元素乘以c

  • 对于行列式而言:

数乘: d e t ( k A n × n ) = k n   d e t ( A ) det (kA_{n\times n}) = k^n\ det(A) det(kAn×n)=kn det(A)

倍乘: d e t ( E i ( c ) A n × n ) = k   d e t ( A ) det (\mathbf E_{i}(c) A_{n\times n}) = k\ det(A) det(Ei(c)An×n)=k det(A)

  • 7
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值