在线性回归中极大似然和最小二乘法的关系

我在Logistic Regression回归中对损失函数用极大似然估计推导,在线性回归中对损失函数用最小二乘法推导,发现在推导梯度的过程中,结果是一样的,所以我对两种方法进行了分析对比。

一、最小二乘法

1.定义
当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。
2.在线性回归中的损失函数
在这里插入图片描述
θ表示要求的参数,h(x)为观测值,y为理论值。

3.对其求偏导后的函数为
采用多元函数求极值的方法,对θ求偏导,让偏导等于0,求出θ值。当θ为向量时,需要对各个θi求偏导计算。

参数更新的公式为:
在这里插入图片描述

二、极大似然估计

1.定义
对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。
2.在Logistic Regression回归中的损失函数
在这里插入图片描述
3.似然估计的思想
测量值 X 是服从概率分布的,求概率模型中的参数,使得在假设的分布下获得该组测量出现概率最大。

4.对似然估计求解得出偏导得出
多元函数求极值的方法,对θ求偏导,让偏导等于0,求出θ值。当θ为向量时,需要对各个θi求偏导计算。

参数更新的公式为:
在这里插入图片描述

三、极大似然估计与最小二乘法的联系与区别

由以上两点,我们可以看出用最小二乘法在线性回归和极大似然估计在Logistic Regression回归中根据损失函数求出的偏导是一样的。

在后面我会具体写出极大似然估计是怎么推导出和最小二乘法一样的具体步骤。

在回归算法中,用最小二乘法和最大似然估计求解损失函数时,最大似然法中,通过选择参数,使已知数据在某种意义下最有可能出现,而某种意义通常指似然函数最大,而似然函数又往往指数据的概率分布函数。与最小二乘法不同的是,最大似然法需要已知这个概率分布函数,这在实践中是很困难的。一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计相同。

最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数,从概率统计的角度处理线性回归并在似然概率函数为高斯函数的假设下同最小二乘建立了的联系。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最小二乘法(Least Squares Method)和极大似然法(Maximum Likelihood Estimation,MLE)都是统计学用于估计参数的重要方法,但它们的基本理念和应用场合有所不同。 **最小二乘法**: - 基本思想:这种方法通常用于线性回归问题,目标是最小化残差平方和,即实际值与预测值之间的差距的平方之和。它假设数据误差服从高斯分布,且均值为0,标准差已知或未知。 - 使用场景:当模型与真实关系存在线性偏差时,比如拟合一条直线(简单线性回归)或多项式曲线。 - 参数求解:通过求解含有待估参数的矩阵方程,找到使误差平方和最小化的参数组合。 **极大似然法**: - 基本思想:这种方法关注的是根据观测数据,寻找最有可能产生这些数据的模型参数。它是基于概率论似然函数,即给定模型参数的概率密度函数的最大值。 - 应用广泛:不仅限于线性模型,适用于各种离散或连续随机变量的模型,包括但不限于多项式分布、指数分布、正态分布等。 - 参数求解:寻找使得数据对数似然函数最大的参数值,通常涉及到数值优化方法如梯度上升或牛顿法。 **区别总结**: 1. 最小二乘法更侧重于误差的平方和最小化,而极大似然法则关注数据出现的概率最大。 2. 最小二乘法通常假定误差为线性和加性的,而极大似然法则更为灵活,适应不同类型的分布。 3. 最小二乘法直接求解最优参数,计算过程相对直观;极大似然法可能需要迭代求解,且结果依赖于初始猜测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值