k-modes聚类算法及python代码实现

本文介绍了K-modes算法,一种用于离散数据的聚类方法。算法通过计算汉明距离来划分样本,并以每个簇的属性众数作为新聚类中心。文章提供了Python代码实现,并展示了运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-modes介绍

k-modes是聚类算法的一种,其主要用于处理离散型的数据,是用来解决k-means处理离散型数据问题的一个优化算法。

算法思想

假设有N个样本,要将其分为三类

  1. 从N个样本中随便选取三个样本作为聚类中心。
  2. 计算N个样本中每个样本到每个聚类中心的汉明距离
    a. 汉明距离:两个样本中相同属性但不同值的个数和,比如a = [1,2,3,4] b = [1,3,6,4] 这里汉明距离为2,因为a[1] !=b[1] a[2] != b[2]
  3. 将每个样本划分到距离最小的聚类中心,组成三个类别
  4. 重新选取聚类中心,每个簇中,每一个属性的众数,将组成新的聚类中心。
  5. 重复2,3,4步骤,直到每个簇中样本到本簇中心的汉明距离总和不在减少,那么聚类结束,得到的三个类别为结构

python代码实现

import numpy as np

if __name__ == '__main__':
    # kmodes思想:
    # 1.随机选取k个初始中心点;
    # 2.针对数据集中的每个样本点,计算样本点与k个中心点的距离(这边计算的是汉明距离,为两个样本点不同的属性取值的个数),将样本点划分到离它最近的中心点所对应的类别中;
    # 3.类别划分完成后,重新确定类别的中心点,将类别中所有样本各特征的众数作为新的中心点对应特征的取值,即该类
### 关于 K-Prototypes 聚类算法 K-Prototypes 是一种扩展自 K-Means 和 K-Modes 的混合聚类方法,适用于处理数值型和分类型数据的组合。它通过结合欧几里得距离(用于数值属性)和汉明距离(用于分类属性),实现了对异构数据的有效聚类。 以下是 Python实现 K-Prototypes 聚类的一个示例代码: ```python from kmodes.kprototypes import KPrototypes import numpy as np import pandas as pd # 创建一个简单的数据集,其中包含数值型和分类型特征 data = { 'Age': [25, 30, 35, 40, 45], 'Income': [50000, 60000, 70000, 80000, 90000], 'Gender': ['Male', 'Female', 'Female', 'Male', 'Other'] } df = pd.DataFrame(data) # 将类别变量转换为字符串形式并指定索引位置 categorical_columns = [2] # Gender 列的位置索引 # 初始化 K-Prototypes 模型 kproto = KPrototypes(n_clusters=2, init='Cao', verbose=1) # 训练模型 clusters = kproto.fit_predict(df.values, categorical=categorical_columns) # 输出聚类结果 print("Cluster Centers:") for cluster_id, center in enumerate(kproto.cluster_centroids_): print(f"Cluster {cluster_id}: {center}") print("\nCluster Labels:", clusters) ``` 上述代码依赖 `kmodes` 库中的 `KPrototypes` 类[^4]。此库专门设计用于解决混合数据类型的聚类问题,并提供了灵活的参数设置选项以便调整数值与分类数据之间的相对重要性。 #### 实现细节说明 - **初始化方式**: 使用 `'Cao'` 方法初始化质心,这是一种针对混合数据优化的方法。 - **输入格式**: 数据应以 NumPy 数组的形式提供给函数;对于分类型列需明确指出其索引位置。 - **超参数调节**: 用户可以根据具体需求调整簇的数量 (`n_clusters`) 及其他配置项如最大迭代次数等。 如果需要进一步探索或改进该算法,则可以从以下方面入手: - 测试不同的初始条件及其对最终结果的影响; - 对不同权重分配策略的效果进行评估; - 结合领域知识定制化定义相似度计算规则。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值