R 语言科研绘图第 36 期 --- 饼状图-基础

在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。

为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式:

R 语言科研绘图模板 --- sciRplothttps://mp.weixin.qq.com/s/QA_8LVqjkdg4A16zLonw4w?payreadticket=HDpepjIY0eM9ZZdfVn5jmTrBsX3MtOahiOb9dwsPXBXdPTtfBMbbj7isbNDzFB1I1i6RaNM

本期绘图预览:

图片

1. 导入包

我们首先导入本期绘图用到的 R 包:

library(ggplot2)

2. 准备数据

接下来我们导入绘图用到的数据,在 sciRplot 中给大家提供了测试数据:

data <- sciRplot_data

3. 准备配色

颜色的选择往往是一件让人特别纠结的事情,这里我们直接使用 sciRcolor 来设置配色:

colors <- sciRcolor::pal_scircolor(37)[1:5]

sciRcolor 是为了 R 语言科研绘图开发的配色工具,包含了 100 种常用配色,详细信息见:

R 语言科研配色工具 --- sciRcolorhttps://mp.weixin.qq.com/s/XZol4VxvHnJD_49ij3f2mg?payreadticket=HDsHOCJZMh1NS5KyrYYE_vz93TnALCJmCJ0JTyh9yoWI3uUUDft4bn-iEBLhOa5eD3328YE

4. 绘制图形

接下来我们通过下面的代码来绘制图形:

p <-   ggplot(data, aes(x="", y=Value, fill=Type)) +  geom_bar(stat="identity", width=1,  color="white", position = position_stack(reverse =T)) +  geom_text(aes(x=1.1, label=Value), color="white", size=10, position = position_stack(reverse =T, vjust=0.5)) +  coord_polar("y", start=0) +  theme_void(base_size = 25) +  theme(legend.position = "top") +  scale_fill_manual(values = colors)p

5. 保存图形

最后我们保存绘制的图形:

ggsave("save/pie-base.png", p, width = 8, height = 6, dpi = 300)

sciRplot 介绍

为了解决 R 语言中科研绘图的问题,我推出了 sciRplot 项目。sciRplot 项目包含了以下内容:

① 100 种绘图代码,按照图形类型进行分类,包含 60 种基础绘图和 40 种进阶绘图

图片

② 配备一站式 html文档,包含测试数据,代码一键复制交互式阅读提高用户体验

图片

### CAZy 数据库绘图方法与工具 在生物信息学领域,针对CAZy数据库的数据可视化存在多种有效的工具和方法。这些工具不仅能够帮助研究人员更好地理解碳水化合物活性酶(CAZymes)的功能分布,还能辅助于比较不同物种间的CAZyme组成差异。 #### 使用R包`carbohydrate.active.enzymes` 为了实现对CAZy数据的有效分析与展示,可以利用专门设计用于处理此类数据的软件包之一——`carbohydrate.active.enzymes` R包[^1]。该包提供了丰富的功能来解析、过滤以及绘制来自CAZy数据库的信息。通过安装并加载这个包,用户可以获得一系列预定义函数的支持来进行定制化的图形输出。 ```r install.packages("BiocManager") BiocManager::install("carbohydrate.active.enzymes") library(carbohydrate.active.enzymes) # 加载示例数据集 data(cazy_example_data) # 绘制特定家族成员数量统计直方图 plot_histogram(data = cazy_example_data, family_column="family", count_column="count") ``` #### 利用Python中的Matplotlib与Seaborn库 除了上述提到的专业化解决方案外,对于那些更倾向于通用编程环境的人来说,也可以考虑采用Python语言及其强大的科学计算生态系统。特别是结合使用matplotlib和seaborn这两个流行的绘图库,可以根据个人需求灵活创建各种类型的图表,比如条形图、饼状图或者热力图等,从而直观呈现CAZy分类下的基因或蛋白质特征。 ```python import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('cazy_data.csv') plt.figure(figsize=(10,8)) sns.countplot(y='class', data=df) plt.title('Distribution of CAZy Classes') plt.show() ``` #### Web-based Visualization Tools 还有一些在线平台提供便捷的方式让用户无需编写任何代码就能完成复杂的数据探索工作。例如 **Carveme** 和 **Expasy Proteomics Server**, 它们允许上传自己的序列文件后自动生成交互式的网页版报告,其中包含了关于所提交样本中发现的各种CAZyme类别的详尽描述及相应的视觉表示形式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ 生信宝库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值