大学物理电磁学——电容与电容器

电容与电容器

  1. 电容

    表征电容器电学特性的物理量
    C = Q U C=\frac{Q}{U} C=UQ
    常见单位:F,uF,pF

  2. 真空中的孤立导体的电容

    如果构成电容器的两块导体足够远,那就把电容器的电容看做是一块导体的孤立电容。
    U = Q 4 π ϵ 0 R U = \frac{Q}{4\pi\epsilon_0R} U=4πϵ0RQ
    C = Q C = 4 π ϵ 0 R C=\frac{Q}{C}=4\pi\epsilon_0R C=CQ=4πϵ0R

  3. 导体组的电容

    1. 平行板电容器的电容

      当两板分别带有+、—Q时,板间是匀强电场。
      E = σ ϵ 0 = Q S ϵ 0 E=\frac{\sigma}{\epsilon_0}=\frac{Q}{S\epsilon_0} E=ϵ0σ=Sϵ0Q(真空中)
      U = E d = Q d S ϵ 0 U=Ed=\frac{Qd}{S\epsilon_0} U=Ed=Sϵ0Qd
      C = Q U = ϵ 0 S d C=\frac{Q}{U}=\frac{\epsilon_0S}{d} C=UQ=dϵ0S
    2. 同心球壳构成的电容器

      C = 4 π ϵ 0 R 1 R 2 R 2 − R 1 C=4\pi\epsilon_0\frac{R_1R_2}{R_2-R_1} C=4πϵ0R2R1R1R2(R2>R1)
      当R2趋于无穷大时,C的值与真空中的点电荷情况相同,正是半径为R1的孤立导体壳的电容
    3. 同轴金属柱面的电容器

      C = 2 π ϵ 0 ln ⁡ ( R 2 / R 1 ) C=\frac{2\pi\epsilon_0}{\ln(R2/R1)} C=ln(R2/R1)2πϵ0

    以上假设都是真空环境,如果两导体之间充满相对介电常数为 ϵ r \epsilon_r ϵr的介质,上述结果直接乘以 ϵ r \epsilon_r ϵr即可

  4. 电容器的连接

    1. 并联

      直接相加
    2. 串联

      倒数等于倒数的和

    就是与电阻相反

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值