电容与电容器
-
电容
表征电容器电学特性的物理量
C = Q U C=\frac{Q}{U} C=UQ
常见单位:F,uF,pF -
真空中的孤立导体的电容
如果构成电容器的两块导体足够远,那就把电容器的电容看做是一块导体的孤立电容。
U = Q 4 π ϵ 0 R U = \frac{Q}{4\pi\epsilon_0R} U=4πϵ0RQ
C = Q C = 4 π ϵ 0 R C=\frac{Q}{C}=4\pi\epsilon_0R C=CQ=4πϵ0R -
导体组的电容
-
平行板电容器的电容
当两板分别带有+、—Q时,板间是匀强电场。
E = σ ϵ 0 = Q S ϵ 0 E=\frac{\sigma}{\epsilon_0}=\frac{Q}{S\epsilon_0} E=ϵ0σ=Sϵ0Q(真空中)
U = E d = Q d S ϵ 0 U=Ed=\frac{Qd}{S\epsilon_0} U=Ed=Sϵ0Qd
C = Q U = ϵ 0 S d C=\frac{Q}{U}=\frac{\epsilon_0S}{d} C=UQ=dϵ0S -
同心球壳构成的电容器
C = 4 π ϵ 0 R 1 R 2 R 2 − R 1 C=4\pi\epsilon_0\frac{R_1R_2}{R_2-R_1} C=4πϵ0R2−R1R1R2(R2>R1)
当R2趋于无穷大时,C的值与真空中的点电荷情况相同,正是半径为R1的孤立导体壳的电容
-
同轴金属柱面的电容器
C = 2 π ϵ 0 ln ( R 2 / R 1 ) C=\frac{2\pi\epsilon_0}{\ln(R2/R1)} C=ln(R2/R1)2πϵ0
以上假设都是真空环境,如果两导体之间充满相对介电常数为 ϵ r \epsilon_r ϵr的介质,上述结果直接乘以 ϵ r \epsilon_r ϵr即可
-
-
电容器的连接
就是与电阻相反