简单微分方程

简单微分方程

  • 分离变量型
  • 换元法解微分方程:
    1. ( x y − y 2 ) d x − ( x 2 − 2 x y ) d y = 0 (xy-y^2)dx-(x^2-2xy)dy=0 (xyy2)dx(x22xy)dy=0
    解: 设 u = x / y u=x/y u=x/y,
    则有 y ′ = u − x u ′ , y'=u-xu', y=uxu,
    化简得 ( 1 − 2 u ) d u u 2 = d x x \frac{(1-2u)du}{u^2}=\frac{dx}{x} u2(12u)du=xdx,
  1. a x + b y + c a 1 x + b 1 y + c 1 = d y d x , ( a , b ) = m ( a 1 , b 1 ) . \frac{ax+by+c}{a_1x+b_1y+c_1}=\frac{dy}{dx},(a,b)=m(a_1,b_1). a1x+b1y+c1ax+by+c=dxdy,(a,b)=m(a1,b1).
    解: 左式= a x + b y + c m ( a x + b y + c ) + c 1 − m c \frac{ax+by+c}{m(ax+by+c)+c_1-mc} m(ax+by+c)+c1mcax+by+c
    u = a x + b y + c u=ax+by+c u=ax+by+c,
    左式 : u m u + d :\frac{u}{mu+d} :mu+du
  2. a x + b y + c a 1 x + b 1 y + c 1 = d y d x \frac{ax+by+c}{a_1x+b_1y+c_1}=\frac{dy}{dx} a1x+b1y+c1ax+by+c=dxdy
    { a x + b y + c = 0 , a 1 x + b − 1 y + c 1 = 0 \begin{cases} ax+by+c=0,&\\ a_1x+b-1y+c_1=0 \end{cases} {ax+by+c=0,a1x+b1y+c1=0
    的解使得 x = X + x 0 , y = Y + y 0 x=X+x_0,y=Y+y_0 x=X+x0,y=Y+y0
    X , Y X,Y X,Y带入原式,
    d Y d X = a X + b Y + ( a x 0 + b y 0 + c 0 ) a 1 X + b 1 Y + ( a 1 x 0 + b 1 y 0 + c 1 ) \frac{dY}{dX}=\frac{aX+bY+(ax_0+by_0+c_0)}{a_1X+b_1Y+(a_1x_0+b_1y_0+c_1)} dXdY=a1X+b1Y+(a1x0+b1y0+c1)aX+bY+(ax0+by0+c0)
  • 常数变易法:将原式化为 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)的形式
    公式:
    y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) y=e^{-\int{P(x)}dx}(\int{Q(x)e^{\int{P(x)}dx}dx+C)} y=eP(x)dx(Q(x)eP(x)dxdx+C)
    eg:1.
    y 2 d x + ( x y − 1 ) d y = 0 注 : 此 时 x 与 y 地 位 平 等 , 故 可 以 x 为 未 知 函 数 进 行 化 简 原 式 可 化 为 : d x d y + 1 y ∗ x = 1 y 2 最 终 解 得 : x = 1 y ( l n y + C ) 补 上 解 y = 0 y^2dx+(xy-1)dy=0\\ 注:此时x与y地位平等,故可以x为未知函数进行化简\\ 原式可化为: \frac{dx}{dy}+\frac{1}{y}*x=\frac{1}{y^2}\\ 最终解得:\\ x=\frac{1}{y}(lny+C)\\ 补上解 y=0 y2dx+(xy1)dy=0:xy,x:dydx+y1x=y21:x=y1(lny+C)y=0
    2. ( y 4 − 3 x 2 ) y ′ + x y = 0 方 法 : 可 利 用 不 定 积 分 换 元 法 , 将 d x 转 换 为 其 他 微 分 原 式 可 化 为 d x 2 d y − 6 x 2 ∗ 1 y = − 2 y 3 再 用 伯 努 利 方 程 求 解 即 可 . (y^4-3x^2)y'+xy=0\\ 方法:可利用不定积分换元法,将dx转换为其他微分\\ 原式可化为\\ \frac{dx^2}{dy}-6x^2*\frac{1}{y}=-2y^3\\ 再用伯努利方程求解即可. (y43x2)y+xy=0:,dxdydx26x2y1=2y3.
    注意y与x的平等关系,以及补解
  • 伯努利方程:将 y ′ + P ( x ) y = Q ( x ) y m y'+P(x)y=Q(x)y^m y+P(x)y=Q(x)ym化为 y − m ∗ y ′ + P ( x ) y 1 − m = Q ( x ) y^{-m}*y'+P(x)y^{1-m}=Q(x) ymy+P(x)y1m=Q(x)的形式,再使 u = y 1 − m u=y^{1-m} u=y1m,代入原式可得到 d u d x + ( 1 − m ) u P ( x ) = ( 1 − m ) Q ( x ) \frac{du}{dx}+(1-m)uP(x)=(1-m)Q(x) dxdu+(1m)uP(x)=(1m)Q(x)
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值