信号与系统(四)傅里叶变换在通信系统中的应用

系统频率特性

  • 频率特性: 我们知道, 系统对激励信号 e ( t ) e(t) e(t)的零状态响应为 r ( t ) = h ( t ) ∗ e ( t ) r(t)=h(t)*e(t) r(t)=h(t)e(t)
    根据卷积定理可得 R ( j ω ) = E ( j ω ) ⋅ H ( j ω ) R(j\omega)=E(j\omega)\cdot H(j\omega) R(jω)=E(jω)H(jω)
    H ( j ω ) H(j\omega) H(jω)为系统函数.且有 φ r ( ω ) = φ e ( ω ) + φ ( ω ) \varphi_r(\omega)=\varphi_e(\omega)+\varphi(\omega) φr(ω)=φe(ω)+φ(ω)
    上式说明信号经过系统后, 输出信号幅度由 H ( j ω ) H(j\omega) H(jω)的幅度进行加权, 相位由 H ( j ω ) H(j\omega) H(jω)的相位进行修正.

无失真传输

  • 无失真条件: 幅度可以成比例增加或减少, 可以有时移, 但波形形状不变. r ( t ) = K e ( t − t 0 )   , r ( t ) ↔ R ( j ω ) = K E ( j ω ) e − j ω 0 t H ( j ω ) = K e − j ω t 0 r(t)=Ke(t-t_0)\ ,r(t)\leftrightarrow R(j\omega)=KE(j\omega)e^{-j\omega_0t}\\H(j\omega)=Ke^{-j\omega t_0} r(t)=Ke(tt0) ,r(t)R(jω)=KE(jω)ejω0tH(jω)=Kejωt0
  • 无失真总结: 幅度为与频率无关的常数K, 系统的通频带为无限宽–全通网络; 相位与频率成正比, 相频特征是一条过原点的负斜率的直线; 不失真的线性系统其冲激响应也是冲激函数.

理想低通

  • 频率特性: H ( j ω ) = { e − j ω t 0   ∣ ω ∣ < ω c 0   其 他 H(j\omega)=\begin{cases}e^{-j\omega t_0} \ |\omega|<\omega_c \\ 0\ 其他\end{cases} H(jω)={ejωt0 ω<ωc0 
  • 理想低通的冲激响应: h ( t ) = ω c π ⋅ S a [ ω c ( t − t 0 ) ] h(t)=\frac{\omega_c}{\pi}\cdot Sa[\omega_c(t-t_0)] h(t)=πωcSa[ωc(tt0)]
  • 理想低通的阶跃响应: r ( t ) = 1 2 + 1 π ∫ 0 ω c ( t − t 0 ) sin ⁡ x x d x = 1 2 + 1 π S i [ ω c ( t − t 0 ) ] r(t)=\frac{1}{2}+\frac{1}{\pi}\int_0^{\omega_c(t-t_0)}\frac{\sin x}{x}dx\\[2ex]=\frac{1}{2}+\frac{1}{\pi}Si[\omega_c(t-t_0)] r(t)=21+π10ωc(tt0)xsinxdx=21+π1Si[ωc(tt0)]
  • 上升时间: r t r_t rt从最小值上升到最大值的时间. t r = 2 ⋅ π ω c t_r=2\cdot \frac{\pi}{\omega_c} tr=2ωcπ
  • 理想低通滤波对矩形脉冲的响应: r ( t ) = 1 π { S i [ ω c ( t − t 0 ) ] − S i [ ω c ( t − t 0 − τ ) ] } r(t)=\frac{1}{\pi}\{Si[\omega_c(t-t_0)]-Si[\omega_c(t-t_0-\tau)]\} r(t)=π1{Si[ωc(tt0)]Si[ωc(tt0τ)]}

调制与解调

  • F ( ω ) = 1 2 [ G ( ω − ω c ) + G ( ω + ω c ) ] F(\omega)=\frac{1}{2}[G(\omega-\omega_c)+G(\omega+\omega_c)] F(ω)=21[G(ωωc)+G(ω+ωc)]
  • G 0 ( ω ) = 1 2 G ( ω ) + 1 4 G ( ω − 2 ω 0 ) + 1 4 G ( ω + 2 ω 0 ) G_0(\omega)=\frac{1}{2}G(\omega)+\frac{1}{4}G(\omega-2\omega_0)+\frac{1}{4}G(\omega+2\omega_0) G0(ω)=21G(ω)+41G(ω2ω0)+41G(ω+2ω0)

希尔伯特变换

  • 定义: H [ f ( t ) ] = f ^ ( t ) = 1 π ∫ − ∞ ∞ f ( τ ) t − τ d τ H[f(t)]=\hat f(t)=\frac{1}{\pi}\int_{-\infty}^\infty \frac{f(\tau)}{t-\tau}d\tau H[f(t)]=f^(t)=π1tτf(τ)dτ
    H − 1 [ f ^ ( t ) ] = f ( t ) = − 1 π ∫ − ∞ ∞ f ^ ( τ ) t − τ d τ H^{-1}[\hat f(t)]=f(t)=-\frac{1}{\pi}\int_{-\infty}^\infty \frac{\hat f(\tau)}{t-\tau}d\tau H1[f^(t)]=f(t)=π1tτf^(τ)dτ
    f ^ ( t ) = f ( t ) ∗ 1 π t \hat f(t)=f(t)*\frac{1}{\pi t} f^(t)=f(t)πt1
    f ( t ) = f ^ ( t ) ∗ ( − 1 π t ) f(t)=\hat f(t)*(-\frac{1}{\pi t}) f(t)=f^(t)(πt1)
    这说明希尔伯特变换就是其经过冲激响应为 1 π t \frac{1}{\pi t} πt1的系统的零状态响应.
  • 如果系统的冲激响应是 1 π t \frac{1}{\pi t} πt1,则系统函数为 H ( ω ) = j s g n ( ω ) H(\omega)=jsgn(\omega) H(ω)=jsgn(ω)
    这说明该系统是一个使相位超前90度的宽带相移全通网络, 因此信号通过希尔伯特变换后, 幅度不变, 相位超前90度.
  • 希尔伯特变换与因果系统的网络函数: 因果系统的网络函数的实部和虚部是一对希尔伯特变换对.

功率谱和能量谱

  • 相关函数: R 12 ( τ ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t − τ ) d t R 21 ( τ ) = ∫ − ∞ ∞ f 1 ( t − τ ) f 2 ( t ) d t R_{12}(\tau)=\int_{-\infty}^\infty f_1(t)f_2(t-\tau)dt\\[2ex] R_{21}(\tau)=\int_{-\infty}^\infty f_1(t-\tau)f_2(t)dt R12(τ)=f1(t)f2(tτ)dtR21(τ)=f1(tτ)f2(t)dt
    相关函数是两信号之间时间差的函数
    R 12 ( τ ) = R 21 ( − τ ) R_{12}(\tau)=R_{21}(-\tau) R12(τ)=R21(τ)
  • 对于某信号f, 定义其与自身时移后的信号积分为自相关系数, 并用 R ( τ ) R(\tau) R(τ)表示, 即
    R ( τ ) = ∫ − ∞ ∞ f ( t + τ ) f ( t ) d t R(\tau)=\int_{-\infty}^\infty f(t+\tau)f(t)dt R(τ)=f(t+τ)f(t)dt
  • 功率谱: 如果f(t)是功率有限信号, 则截取f(t)在 ∣ t ∣ ≤ T 2 |t|\leq \frac{T}{2} t2T区间的一段, 得到一个截断函数 f T ( t ) f_T(t) fT(t)
    ρ ( ω ) = lim ⁡ T → ∞ ∣ F T ( ω ) ∣ 2 T \rho(\omega)=\lim_{T\to \infty}\frac{|F_T(\omega)|^2}{T} ρ(ω)=TlimTFT(ω)2
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值