牛顿力学
物体的速度可以改变(物体可以加速),当物体受到来自其他物体的一个或多个力(推动或拉动)作用时。牛顿力学将加速度和力联系起来。
力
力是矢量量。它们的大小是通过它们对标准千克物体产生的加速度来定义的。能够使该标准物体产生1 m/s²加速度的力被定义为大小为1牛(N)。力的方向是它所引起的加速度的方向。力的合成遵循矢量代数的规则。作用在物体上的合力是所有作用在该物体上的力的矢量和。
牛顿第一定律
如果物体上没有合力作用,那么该物体将保持静止(如果它最初是静止的),或者以恒定速度沿直线运动(如果它在运动中)。
惯性参考系
在牛顿力学适用的参考系中,这些参考系被称为惯性参考系或惯性系。在牛顿力学不适用的参考系中,这些参考系被称为非惯性参考系或非惯性系。
质量 物体的质量是将该物体的加速度与引起该加速度的合力联系起来的特性。质量是标量。
牛顿第二定律
质量为 m m m 的物体所受的合力 F ⃗ net \vec{F}_{\text{net}} Fnet 与物体的加速度 a ⃗ \vec{a} a 之间的关系为:
F ⃗ net = m a ⃗ , \vec{F}_{\text{net}} = m \vec{a}, Fnet=ma,
这可以写成分量形式:
F net , x = m a x , F net , y = m a y , 和 F net , z = m a z 。 F_{\text{net}, x} = ma_x, \quad F_{\text{net}, y} = ma_y, \quad \text{和} \quad F_{\text{net}, z} = ma_z。 Fnet,x=max,Fnet,y=may,和Fnet,z=maz。
第二定律表明,在国际单位制中,
1 N = 1 kg ⋅ m/s 2 。 1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2。 1 N=1 kg⋅m/s2。
受力图是简化的图示,其中只考虑一个物体。该物体可以用草图或一个点来表示。画出作用在该物体上的外力,并叠加一个坐标系,以便简化求解。
一些特定的力
引力 F ⃗ g \vec{F}_g Fg 是由另一个物体施加的拉力。在本书的大多数情况下,这个物体是地球或其他天体。对于地球,引力方向向下,指向地面,假设地面为惯性系。在这个假设下,引力的大小为
F g = m g F_g = mg Fg=mg
其中 m m m 是物体的质量, g g g 是自由落体加速度的大小。
物体的重力 W W W 是平衡物体上引力所需的向上力的大小。物体的重力与物体的质量相关,关系为
W = m g W = mg W=mg
支持力 F ⃗ N \vec{F}_N FN 是物体受到的来自物体所压表面的力。支持力总是垂直于表面。
摩擦力 f ⃗ \vec{f} f 是当物体沿表面滑动或试图滑动时,作用在物体上的力。该力总是平行于表面并朝向反抗滑动的方向。在无摩擦表面上,摩擦力可以忽略不计。
当绳子处于张力状态时,绳子的每一端都对物体施加拉力。拉力沿绳子的方向,远离与物体连接的点。对于无质量的绳子(质量可以忽略不计的绳子),绳子两端的拉力大小相等,为 T 。即使绳子绕过一个无摩擦的滑轮(质量和轴上的摩擦力可以忽略的滑轮),两端的拉力仍保持 T 大小。
牛顿第三定律
如果物体 C 对物体 B 施加一个力 F ⃗ B C \vec{F}{BC} FBC,那么物体 B 也会对物体 C 施加一个力 F ⃗ C B \vec{F}{CB} FCB:
F ⃗ B C = − F ⃗ C B 。 \vec{F}{BC} = -\vec{F}{CB}。 FBC=−FCB。