离散数学-逻辑与证明基础1.7(证明简介)

直接证明

在直接证明中,我们假设 p 为真,并使用公理、定义、先前已证的定理和推理规则来证明 q 也必须为真。

定义 1 如果存在整数 kkk 使得 n=2kn = 2kn=2k,则整数 nnn 是偶数;如果存在整数 kkk 使得 n = 2k + 1$,则 nnn 是奇数。(注意,每个整数要么是偶数,要么是奇数,没有整数既是偶数又是奇数。)当两个整数都是偶数或都是奇数时,它们具有相同的奇偶性;当一个是偶数而另一个是奇数时,它们具有相反的奇偶性。

例1 给出定理“如果 nnn 是奇整数,那么 n2n^2n2 是奇数”的直接证明。

解答:注意,这个定理表述为 ∀n(P(n)→Q(n))\forall n (P(n) \rightarrow Q(n))n(P(n)Q(n)),其中 P(n)P(n)P(n) 是“nnn 是奇整数”,Q(n)Q(n)Q(n) 是“n2n^2n2 是奇数”。正如我们所说,我们将在数学证明中遵循通常的惯例,通过证明 P(n)P(n)P(n) 蕴含 Q(n)Q(n)Q(n),而不是明确地使用全称实例化。

为了开始这个定理的直接证明,我们假设这个条件语句的前提为真,也就是说,我们假设 nnn 是奇数。根据奇整数的定义,n=2k+1n = 2k + 1n=2k+1,其中 kkk 是某个整数。我们希望证明 n2n^2n2 也是奇数。我们可以对方程 n=2k+1n = 2k + 1n=2k+1 的两边平方,以得到表达 n2n^2n2 的新方程。

当我们这样做时,得到

n2=(2k+1)2=4k2+4k+1=2(2k2+2k)+1 n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 n2=(2k+1)2=4k2+4k+1=2(2k2+2k)+1

根据奇数的定义,我们可以得出 n2n^2n2 是奇整数(它比两倍某个整数大1)。因此,我们已经证明了如果 nnn 是奇整数,那么 n2n^2n2 也是奇数。

例2 给出定理“如果 mmmnnn 都是完全平方数,那么 mnmnmn 也是完全平方数”的直接证明。(若存在整数 bbb 使得 a=b2a = b^2a=b2,则整数 aaa 为完全平方数。)

解答:根据完全平方数的定义,可以得出存在整数 sssttt,使得 m=s2m = s^2m=s2n=t2n = t^2n=t2

通过将 mmm 代入 s2s^2s2,并将 nnn 代入 t2t^2t2mnmnmn 中,可以看到:

mn=s2t2=(ss)(tt)=(st)(st)=(st)2, mn = s^2 t^2 = (ss)(tt) = (st)(st) = (st)^2, mn=s2t2=(ss)(tt)=(st)(st)=(st)2

利用了乘法的交换律和结合律。因此,根据完全平方数的定义,mnmnmn 也是一个完全平方数,因为它是整数 ststst 的平方。我们已经证明了如果 mmmnnn 都是完全平方数,那么 mnmnmn 也是一个完全平方数。

反证法

例3 证明:如果 nnn 是整数且 3n+23n + 23n+2 是奇数,那么 nnn 是奇数。

解答: 我们首先尝试直接证明。为了构建直接证明,我们首先假设 3n+23n + 23n+2 是一个奇整数。根据奇数的定义,我们知道 3n+2=2k+13n + 2 = 2k + 13n+2=2k+1,其中 kkk 是一个整数。我们可以使用这个事实来证明 nnn 是奇数吗?我们看到 3n+1=2k3n + 1 = 2k3n+1=2k,但似乎没有任何直接的方法可以得出 nnn 是奇数的结论。由于我们的直接证明尝试失败了,我们接下来尝试用反证法证明。

反证法的第一步是假设条件语句“如果 3n+23n + 23n+2 是奇数,那么 nnn 是奇数”的结论为假;即,假设 nnn 是偶数。然后,根据偶数的定义,n=2kn = 2kn=2k,其中 kkk 是整数。将 2k2k2k 代入 nnn,我们得到 3n+2=3(2k)+2=6k+2=2(3k+1)3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)3n+2=3(2k)+2=6k+2=2(3k+1)。这告诉我们 3n+23n + 23n+2 是偶数(因为它是 2 的倍数),因此不是奇数。这就是该定理前提的否定。由于条件语句的结论的否定意味着假设为假原始条件语句成立。我们的反证法证明成功了;我们已经证明了定理“如果 3n+23n + 23n+2 是奇数,那么 nnn 是奇数”。

例4 证明:如果 n=abn = abn=ab,其中 aaabbb 是正整数,那么 a≤na \leq \sqrt{n}anb≤nb \leq \sqrt{n}bn

解答: 我们假设语句 (a≤n)∨(b≤na \leq \sqrt{n}) \lor (b \leq \sqrt{n}an)(bn) 是假的。利用析取的含义以及德摩根律,我们得出这意味着 a>n∧b>na > \sqrt{n} \land b > \sqrt{n}a>nb>n。我们可以将这些不等式相乘(利用如果 0<s<t0 < s < t0<s<t0<u<v0 < u < v0<u<v,则 su<tvsu < tvsu<tv 的事实),得到 ab>n⋅n=nab > \sqrt{n} \cdot \sqrt{n} = nab>nn=n。这表明 ab≠nab \neq nab=n,这与 n=abn = abn=ab 的陈述相矛盾。

定义 2 如果存在整数 pppqqq,其中 q≠0q \neq 0q=0,使得实数 r=pqr = \frac{p}{q}r=qp,那么称实数 rrr 是有理数。不满足有理条件的实数称为无理数。

例5 证明:两个有理数的和是有理数。

解答: 我们首先尝试直接证明。首先,假设 rrrsss 是有理数。根据有理数的定义,可以得到存在整数 pppqqq,且 q≠0q \neq 0q=0,使得 r=pqr = \frac{p}{q}r=qp,并且存在整数 tttuuu,其中 u≠0u \neq 0u=0,使得 s=tus = \frac{t}{u}s=ut
r+s=pq+tu=pu+qtqu r + s = \frac{p}{q} + \frac{t}{u} = \frac{pu + qt}{qu} r+s=qp+ut=qupu+qt

因为 q≠0q \neq 0q=0u≠0u \neq 0u=0,所以 qu≠0qu \neq 0qu=0。因此,我们已经将 r+sr + sr+s 表示为两个整数的比值,其中 v=pu+qtv = pu + qtv=pu+qtw=quw = quw=qu,并且 w≠0w \neq 0w=0。这意味着 r+sr + sr+s 是有理数。

例6 证明:如果 nnn 是整数且 n2n^2n2 是奇数,那么 nnn 是奇数。

解答: 我们首先尝试直接证明。假设 nnn 是整数且 n2n^2n2 是奇数。根据奇数的定义,存在一个整数 kkk 使得 n2=2k+1n^2 = 2k + 1n2=2k+1。似乎没有明显的方法可以证明 nnn 是奇数,因为对 nnn 求解会得到方程 n=±2k+1n = \pm \sqrt{2k + 1}n=±2k+1,这并没有多大用处。

我们接下来尝试用反证法证明。我们假设 nnn 不是奇数。因为每个整数要么是奇数要么是偶数,这意味着 nnn 是偶数。这意味着存在一个整数 kkk 使得 n=2kn = 2kn=2k。通过对该等式的两边平方,我们得到 n2=4k2=2(2k2)n^2 = 4k^2 = 2(2k^2)n2=4k2=2(2k2),这意味着 n2n^2n2 也是偶数,因为 n2=2tn^2 = 2tn2=2t,其中 t=2k2t = 2k^2t=2k2。我们已经证明,如果 nnn 是整数且 n2n^2n2 是奇数,那么 nnn 是奇数。我们的反证法证明成功了。

矛盾法

例7 证明:在任意选定的 22 天中,至少有四天落在一周的同一天。

解答: 设 ppp 为命题“在 22 个选定的日子中,至少有四天落在同一天。”假设 ¬p\neg p¬p 为真。这意味着在这 22 天中,最多只有三天落在同一天。因为一周有七天,这意味着最多只有 21 天可以被选择,因为对于一周每一天最多只有三天落在该天。这与我们考虑的 22 天前提相矛盾。

例8 证明 2\sqrt{2}2 是无理数。

解答: 设 ppp 为命题“2\sqrt{2}2 是无理数”。我们假设 ¬p\neg p¬p 为真。注意,¬p\neg p¬p 是命题“2\sqrt{2}2 是有理数”。

如果 2\sqrt{2}2 是有理数,那么存在整数 aaabbb,使得 2=ab\sqrt{2} = \frac{a}{b}2=ba,其中 b≠0b \neq 0b=0aaabbb 互质(即分数 ab\frac{a}{b}ba 已是最简分数)。这里我们利用了每个有理数都可以写成最简分数的事实。因为 2=ab\sqrt{2} = \frac{a}{b}2=ba,将该等式两边平方得到

2=a2b22 = \frac{a^2}{b^2}2=b2a2.

因此,

2b2=a22b^2 = a^22b2=a2.

根据偶数的定义,a2a^2a2 是偶数。我们接下来使用“如果 a2a^2a2 是偶数,那么 aaa 也必须是偶数”这一事实。此外,因为 aaa 是偶数,根据偶数的定义,设 a=2ca = 2ca=2c,其中 ccc 是某个整数。因此,

2b2=(2c)2=4c22b^2 = (2c)^2 = 4c^22b2=(2c)2=4c2.

将该方程两边除以 2 得到

b2=2c2b^2 = 2c^2b2=2c2.

根据偶数的定义,这意味着 b2b^2b2 是偶数。再次利用“如果一个整数的平方是偶数,那么这个整数本身也必须是偶数”的事实,我们得出 bbb 也是偶数。

由于我们的假设 ¬p\neg p¬p 导致了矛盾,即 2 可以整除 aaabbb,而 2 不能同时整除 aaabbb,因此 ¬p\neg p¬p 必然为假。

因此,命题 ppp2\sqrt{2}2 是无理数”是真命题。我们已经证明了 2\sqrt{2}2 是无理数。

等价证明

要证明一个双条件命题,即形式为 p↔qp \leftrightarrow qpq 的陈述,我们需要证明 p→qp \rightarrow qpqq→pq \rightarrow pqp 都为真。这个方法的有效性基于下述重言式:

(p↔q)↔(p→q)∧(q→p)(p \leftrightarrow q) \leftrightarrow (p \rightarrow q) \land (q \rightarrow p)(pq)(pq)(qp).

例9 证明定理:“如果 nnn 是整数,那么 nnn 是奇数当且仅当 n2n^2n2 是奇数。”

解答: 为了证明该定理,我们需要证明 p→qp \rightarrow qpqq→pq \rightarrow pqp 都为真。

当我们证明一组命题是等价的时,我们可以建立任何链式的条件语句,只要可以在链中从一个语句过渡到任何其他语句。例如,我们可以通过证明 p1→p3,p3→p2,p_1 \rightarrow p_3, p_3 \rightarrow p_2,p1p3,p3p2,p2→p1p_2 \rightarrow p_1p2p1 来表明 p1,p2p_1, p_2p1,p2p3p_3p3 是等价的。

例10 证明关于整数 nnn 的以下陈述是等价的:

p_1 : n 是偶数。

p_2 : n - 1 是奇数。

p_3 : n^2 是偶数。

解答:我们将通过证明条件陈述 p1→p2p_1 \rightarrow p_2p1p2p2→p3p_2 \rightarrow p_3p2p3p3→p1p_3 \rightarrow p_1p3p1 为真,来展示这三个陈述是等价的。

我们使用直接证明来证明 p1→p2p_1 \rightarrow p_2p1p2。假设 nnn 是偶数。那么 n=2kn = 2kn=2k(其中 kkk 是某个整数)。因此,n−1=2k−1=2(k−1)+1n - 1 = 2k - 1 = 2(k - 1) + 1n1=2k1=2(k1)+1。这意味着 n−1n - 1n1 是奇数,因为它是形如 2m+12m + 12m+1 的形式,其中 mmm 是整数 k−1k - 1k1

我们还使用直接证明来证明 p2→p3p_2 \rightarrow p_3p2p3。现在假设 n−1n - 1n1 是奇数。那么 n−1=2k+1n - 1 = 2k + 1n1=2k+1(其中 k 是某个整数)。因此,n=2k+2n = 2k + 2n=2k+2,从而 n2=(2k+2)2=4k2+8k+4=2(2k2+4k+2)n^2 = (2k + 2)^2 = 4k^2 + 8k + 4 = 2(2k^2 + 4k + 2)n2=(2k+2)2=4k2+8k+4=2(2k2+4k+2)。这意味着 n2是2k2+4k+2n^2 是 2k^2 + 4k + 2n22k2+4k+2 的两倍,因此是偶数。

为了证明 p3→p1p_3 \rightarrow p_1p3p1,我们使用反证法。也就是说,我们证明如果 nnn 不是偶数,那么 n2n^2n2 也不是偶数。

反例

当我们面对形式为 ∀xP(x)\forall x P(x)xP(x) 的陈述时,如果我们认为它是假的或它抵挡住了所有的证明尝试,我们会寻找一个反例。

例11 证明陈述“每个正整数都是两个整数平方的和”是错误的。

解答:不难找到一个反例,因为 3 不能表示为两个整数平方的和。为说明这一点,请注意不超过 3 的唯一完全平方数是 02=00^2 = 002=012=11^2 = 112=1。此外,没有办法将 3 表示为两个这样的数的和(每个数为 0 或 1)。因此,我们已经证明了“每个正整数都是两个整数平方的和”是错误的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值