微积分-积分应用5.3(圆柱壳体积)

一些体积问题使用前面章节中的方法非常难以处理。例如,让我们考虑一个问题,即通过围绕 y y y 轴旋转区域(由 y = 2 x 2 − x 3 y = 2x^2 - x^3 y=2x2x3 y = 0 y = 0 y=0 所围成的区域)来求得旋转体的体积(见图 1)。如果我们沿着 y y y 轴垂直切片,我们会得到一个垫片。但是,要计算垫片的内半径和外半径,我们必须将三次方程 y = 2 x 2 − x 3 y = 2x^2 - x^3 y=2x2x3 解出 x x x 关于 y y y 的表达式,这并不容易。

幸运的是,有一种叫做圆柱壳法的方法,在这种情况下更容易使用。图 2 显示了一个具有内半径 r 1 r_1 r1、外半径 r 2 r_2 r2 和高度 h h h 的圆柱壳。它的体积 V V V 是通过从外圆柱的体积 V 2 V_2 V2 中减去内圆柱的体积 V 1 V_1 V1 来计算的:

V = V 2 − V 1 = π r 2 2 h − π r 1 2 h = π ( r 2 2 − r 1 2 ) h = π ( r 2 + r 1 ) ( r 2 − r 1 ) h = 2 π r 2 + r 1 2 h ( r 2 − r 1 ) \begin{align*} V &= V_2 - V_1\\ &= \pi r_2^2 h - \pi r_1^2 h = \pi (r_2^2 - r_1^2) h\\ &= \pi (r_2 + r_1)(r_2 - r_1) h\\ &= 2\pi \frac{r_2 + r_1}{2} h (r_2 - r_1) \end{align*} V=V2V1=πr22hπr12h=π(r22r12)h=π(r2+r1)(r2r1)h=2π2r2+r1h(r2r1)

如果我们令 Δ r = r 2 − r 1 \Delta r = r_2 - r_1 Δr=r2r1(壳的厚度),并且 r = 1 2 ( r 2 + r 1 ) r = \frac{1}{2}(r_2 + r_1) r=21(r2+r1)(壳的平均半径),那么这个圆柱壳的体积公式变为:

V = 2 π r h Δ r V = 2\pi r h \Delta r V=2πrhΔr

这个公式可以记忆为:

V = [ 周长 ] × [ 高度 ] × [ 厚度 ] V = [周长] \times [高度] \times [厚度] V=[周长]×[高度]×[厚度]

现在,设 S S S 是通过围绕 y y y 轴旋转由 y = f ( x ) y = f(x) y=f(x)(其中 f ( x ) ≥ 0 f(x) \geq 0 f(x)0), y = 0 y = 0 y=0 x = a x = a x=a,以及 x = b x = b x=b(其中 b > a ≥ 0 b > a \geq 0 b>a0)所围成的区域而得到的旋转体。(见图3)
在这里插入图片描述

我们将区间 [ a , b ] [a, b] [a,b] 分成 n n n 个宽度为 Δ x \Delta x Δx 的子区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi],并令 x ˉ i \bar{x}_i xˉi 为第 i i i 个子区间的中点。如果将底为 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi] 且高为 f ( x ˉ i ) f(\bar{x}_i) f(xˉi) 的矩形绕 y y y 轴旋转,得到的结果是一个平均半径为 x ˉ i \bar{x}_i xˉi、高度为 f ( x ˉ i ) f(\bar{x}_i) f(xˉi)、厚度为 Δ x \Delta x Δx 的圆柱壳。(见图4)因此,按照公式1,它的体积为:
在这里插入图片描述

V i = ( 2 π x ˉ i ) [ f ( x ˉ i ) ] Δ x V_i = (2\pi \bar{x}_i) [f(\bar{x}_i)] \Delta x Vi=(2πxˉi)[f(xˉi)]Δx

因此,旋转体 S S S 的体积近似等于这些壳体体积的总和:

V ≈ ∑ i = 1 n V i = ∑ i = 1 n 2 π x ˉ i f ( x ˉ i ) Δ x V \approx \sum_{i=1}^{n} V_i = \sum_{i=1}^{n} 2\pi \bar{x}_i f(\bar{x}_i) \Delta x Vi=1nVi=i=1n2πxˉif(xˉi)Δx

随着 n → ∞ n \to \infty n,这个近似看起来会变得越来越精确。但是,根据积分的定义,我们知道:

lim ⁡ n → ∞ ∑ i = 1 n 2 π x ˉ i f ( x ˉ i ) Δ x = ∫ a b 2 π x f ( x ) d x \lim_{n \to \infty} \sum_{i=1}^{n} 2\pi \bar{x}_i f(\bar{x}_i) \Delta x = \int_a^b 2\pi x f(x) dx nlimi=1n2πxˉif(xˉi)Δx=ab2πxf(x)dx

因此,以下公式看起来是合理的:

2 通过围绕 y y y 轴旋转图 3 中位于曲线 y = f ( x ) y = f(x) y=f(x) 之下、从 a a a b b b 的区域,得到的固体体积为:
V = ∫ a b 2 π x f ( x )   d x 其中   0 ≤ a < b V = \int_{a}^{b} 2\pi x f(x) \, dx \quad \text{其中} \, 0 \leq a < b V=ab2πxf(x)dx其中0a<b

使用圆柱壳的方法使得公式 2 看起来合理,但我们稍后将能够证明这一点。

记住公式 2 的最好方法是把它想象成一个典型的壳体,并且将其展开和压平如图 5 所示,半径为 x x x,周长为 2 π x 2\pi x 2πx,高度为 f ( x ) f(x) f(x),厚度为 Δ x \Delta x Δx d x dx dx,公式如下:

∫ a b ( 2 π x ) ⏟ 周长 f ( x ) ⏟ 高度 d x ⏟ 厚度 \int_{a}^{b} \underbrace{(2\pi x)}_{\text{周长}} \underbrace{f(x)}_{\text{高度}} \underbrace{dx}_{\text{厚度}} ab周长 (2πx)高度 f(x)厚度 dx
在这里插入图片描述

这种推理方式在其他情况下也会有帮助,例如当我们围绕 y 轴以外的线旋转时。

例 1 求由 y = 2 x 2 − x 3 y = 2x^2 - x^3 y=2x2x3 y = 0 y = 0 y=0 围成的区域绕 y y y 轴旋转所得固体的体积。

从图 6 的草图中,我们看到一个典型的壳体的半径为 x x x,周长为 2 π x 2\pi x 2πx,高度 f ( x ) = 2 x 2 − x 3 f(x) = 2x^2 - x^3 f(x)=2x2x3。因此,使用壳体法,体积为:
在这里插入图片描述

V = ∫ 0 2 ( 2 π x ) ( 2 x 2 − x 3 ) d x = 2 π ∫ 0 2 ( 2 x 3 − x 4 ) d x = 2 π [ 1 2 x 4 − 1 5 x 5 ] 0 2 = 2 π ( 8 − 32 5 ) = 16 5 π \begin{align*} V &= \int_0^2 (2\pi x)(2x^2 - x^3) dx\\ &= 2\pi \int_0^2 (2x^3 - x^4) dx = 2\pi \left[ \frac{1}{2}x^4 - \frac{1}{5}x^5 \right]_0^2\\ &= 2\pi \left( 8 - \frac{32}{5} \right) = \frac{16}{5} \pi \end{align*} V=02(2πx)(2x2x3)dx=2π02(2x3x4)dx=2π[21x451x5]02=2π(8532)=516π

可以验证,壳体法与切片法给出相同的答案。

注意 比较例 1 的解法与本节开头的说明,我们可以看到,对于这个问题,圆柱壳的方法比垫圈法要容易得多。我们不需要找到局部最大值的坐标,也不需要求解 x x x 关于 y y y 的方程。然而,在其他例子中,上一节的方法可能更容易。

例 2 求由 y = x y = x y=x y = x 2 y = x^2 y=x2 围成的区域绕 y 轴旋转所得固体的体积。

该区域和典型的壳体如图 8 所示。我们看到壳的半径为 x x x,周长为 2 π x 2\pi x 2πx,高度为 x − x 2 x - x^2 xx2。因此,体积为:
在这里插入图片描述

V = ∫ 0 1 ( 2 π x ) ( x − x 2 ) d x = 2 π ∫ 0 1 ( x 2 − x 3 ) d x = 2 π [ x 3 3 − x 4 4 ] 0 1 = π 6 \begin{align*} V &= \int_0^1 (2\pi x)(x - x^2) dx = 2\pi \int_0^1 (x^2 - x^3) dx\\ &= 2\pi \left[ \frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{\pi}{6} \end{align*} V=01(2πx)(xx2)dx=2π01(x2x3)dx=2π[3x34x4]01=6π

正如接下来的例子所示,壳体法在围绕 x 轴旋转时同样适用。我们只需画一个图来确定壳的半径和高度即可。

例 3 使用圆柱壳法求由 y = x y = \sqrt{x} y=x 0 0 0 1 1 1 之间围成的区域绕 x 轴旋转所得固体的体积。

这个问题在例 5.2.2 中使用了圆盘法来求解。为了使用壳法,我们将 y = x y = \sqrt{x} y=x (该例中的图中)重新标记为 x = y 2 x = y^2 x=y2(如图 9)。对于绕 x x x 轴旋转,我们看到典型的壳体的半径为 y y y,周长为 2 π y 2\pi y 2πy,高度为 1 − y 2 1 - y^2 1y2。因此体积为:
在这里插入图片描述

V = ∫ 0 1 ( 2 π y ) ( 1 − y 2 ) d y = 2 π ∫ 0 1 ( y − y 3 ) d y = 2 π [ y 2 2 − y 4 4 ] 0 1 = π 2 \begin{align*} V &= \int_0^1 (2\pi y)(1 - y^2) dy = 2\pi \int_0^1 (y - y^3) dy\\ &= 2\pi \left[ \frac{y^2}{2} - \frac{y^4}{4} \right]_0^1 = \frac{\pi}{2} \end{align*} V=01(2πy)(1y2)dy=2π01(yy3)dy=2π[2y24y4]01=2π

在这个问题中,圆盘法更简单。

例 4 求由 y = x − x 2 y = x - x^2 y=xx2 y = 0 y = 0 y=0 围成的区域绕 x = 2 x = 2 x=2 直线旋转所得固体的体积。

图 10 显示了该区域及绕 x = 2 x = 2 x=2 旋转形成的圆柱壳。壳的半径为 2 − x 2 - x 2x,周长为 2 π ( 2 − x ) 2\pi (2 - x) 2π(2x),高度为 x − x 2 x - x^2 xx2。因此,所求固体的体积为:

V = ∫ 0 1 2 π ( 2 − x ) ( x − x 2 ) d x = 2 π ∫ 0 1 ( x 3 − 3 x 2 + 2 x ) d x = 2 π [ x 4 4 − x 3 + x 2 ] 0 1 = π 2 \begin{align*} V &= \int_0^1 2\pi(2 - x)(x - x^2) dx\\ &= 2\pi \int_0^1 (x^3 - 3x^2 + 2x) dx\\ &= 2\pi \left[ \frac{x^4}{4} - x^3 + x^2 \right]_0^1 = \frac{\pi}{2} \end{align*} V=012π(2x)(xx2)dx=2π01(x33x2+2x)dx=2π[4x4x3+x2]01=2π

圆盘与垫圈 vs 圆柱壳

在计算旋转体的体积时,如何判断应该使用圆盘(或垫圈)还是圆柱壳呢?有几个需要考虑的因素:该区域是否更容易通过上下边界曲线 y = f ( x ) y = f(x) y=f(x) 或左右边界曲线 x = g ( y ) x = g(y) x=g(y) 来描述?哪种方法更容易处理?对于一个变量,积分的上下限是否更容易找到?使用 x x x 作为变量时,该区域是否需要两个单独的积分,而使用 y y y 作为变量时只需一个积分?我们能否对我们选择的变量设置的积分进行评估?

如果我们决定某一个变量更容易处理,那么这就决定了我们使用的方法。画一个区域中的样本矩形,对应于该固体的截面。矩形的厚度,即 Δ x \Delta x Δx Δ y \Delta y Δy,对应于积分变量。如果你想象矩形旋转,它要么变成圆盘(或垫圈),要么变成壳。

使用优化算法,以优化VMD算法的惩罚因子惩罚因子 (α) 和分解层数 (K)。 1、将量子粒子群优化(QPSO)算法与变分模态分解(VMD)算法结合 VMD算法背景: VMD算法是一种自适应信号分解算法,主要用于分解信号为不同频率带宽的模态。 VMD的关键参数包括: 惩罚因子 α:控制带宽的限制。 分解层数 K:决定分解出的模态数。 QPSO算法背景: 量子粒子群优化(QPSO)是一种基于粒子群优化(PSO)的一种改进算法,通过量子行为模型增强全局搜索能力。 QPSO通过粒子的量子行为使其在搜索空间中不受位置限制,从而提高算法的收敛速度与全局优化能力。 任务: 使用QPSO优化VMD中的惩罚因子 α 和分解层数 K,以获得信号分解的最佳效果。 计划: 定义适应度函数:适应度函数根据VMD分解的效果来定义,通常使用重构信号的误差(例如均方误差、交叉熵等)来衡量分解的质量。 初始化QPSO粒子:定义粒子的位置和速度,表示 α 和 K 两个参数。初始化时需要在一个合理的范围内为每个粒子分配初始位置。 执行VMD分解:对每一组 α 和 K 参数,运行VMD算法分解信号。 更新QPSO粒子:使用QPSO算法更新粒子的状态,根据适应度函数调整粒子的搜索方向和位置。 迭代求解:重复QPSO的粒子更新步骤,直到满足终止条件(如适应度函数达到设定阈值,或最大迭代次数)。 输出优化结果:最终,QPSO算法会返回一个优化的 α 和 K,从而使VMD分解效果最佳。 2、将极光粒子(PLO)算法与变分模态分解(VMD)算法结合 PLO的优点与适用性 强大的全局搜索能力:PLO通过模拟极光粒子的运动,能够更高效地探索复杂的多峰优化问题,避免陷入局部最优。 鲁棒性强:PLO在面对高维、多模态问题时有较好的适应性,因此适合海上风电时间序列这种非线性、多噪声的数据。 应用场景:PLO适合用于优化VMD参数(α 和 K),并将其用于风电时间序列的预测任务。 进一步优化的建议 a. 实现更细致的PLO更新策略,优化极光粒子的运动模型。 b. 将PLO优化后的VMD应用于真实的海上风电数据,结合LSTM或XGBoost等模型进行风电功率预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值