【论文解析】Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

《Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks》 Pconv
论文链接:https://paperswithcode.com/paper/run-don-t-walk-chasing-higher-flops-for
我主要观察Pconv的工作原理

出发点

卷积核内容,就是我们需要具体迭代得参数,如图黄色部分内容。该参数就是3×3×3。
这是对三通道,使用3×3的卷积核,输出一个通道的情况。

在这里插入图片描述

延迟时间:模型推理和后处理时间。时间越小,执行速度越快。
模型的延迟时间的计算公式如下。其中FLOPS是每秒运算次数FLOPs是总共浮点运算次数。虽然有许多减少FLOPs的尝试,但都很少考虑同时优化FLOPS以实现真正的低延迟。

在这里插入图片描述
然而,作者观察到,这种FLOPs的减少并不一定会导致类似延迟时间的减少。这主要源于低效率的每秒浮点运算(FLOPS)。因此,作者提出了一种新的partial convolution(PConv),通过同时减少冗余计算和内存访问,更有效地提取空间特征。

解决方案

设图中的输入通道和输出通道都是 C,卷积核大小为K × K
图a是普通卷积,对每个输入通道,都使用不同的卷积核,如图一:参数量为:K × K × C²
图b是DW卷积,DW卷积对每个输入通道都使用同一个的卷积核:参数量为:K × K × C。然而实际直接使用C会导致精度大幅度下降,所以C实际取值大于输入通道数C。
图c是论文提出的PConv,**只取部分通道上的信息进行卷积,其他通道上的信息则原封不动保留下来。**参数量为:K × K × Cp。其中r = Cp/C,r通常取1/4。

在这里插入图片描述
具体代码:

在这里插入图片描述

Besides

论文通过计算F范式来评估了位置的重要性。下图是对3×3的卷积核进行评估,说明中心位置更为重要。
在这里插入图片描述

在这里插入图片描述
由此,作者选择,先对图像进行一个1×1的卷积,对所有通道都同时使用(PWConv)。再使用PConv。这样更符合上F范式所得出的结论。卷积结构更加关注中心信息。
在这里插入图片描述

FasterNet

在这里插入图片描述
在这里插入图片描述

实验

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值