信息安全数学基础——一次同余式


定义3.1

  设 m m m是一个正整数, f ( x ) f(x) f(x)为多项式且
f ( x ) = a n x n + ⋯ + a 1 x + a 0 f(x)=a_nx^n+\dots+a_1x+a_0 f(x)=anxn++a1x+a0
其中 a i a_i ai是整数,则
f ( x ) ≡ 0    ( m o d   m ) f(x)\equiv0\ \ (mod\ m) f(x)0  (mod m)
称作模 m m m同余式。若 a n ≢ 0 ( m o d   m ) a^n\not\equiv0(mod\ m) an0(mod m),则 n n n叫作 f ( x ) f(x) f(x)的次数,记为 d e g f degf degf。此时叫作模 m m m n n n次同余式。
  如果整数 a a a使得
f ( a ) ≡ 0    ( m o d   m ) f(a)\equiv0\ \ (mod\ m) f(a)0  (mod m)
成立,则 a a a叫作同余式的解。

定理3.1

  一次同余方程 a x ≡ b ( m o d   m ) ax\equiv b(mod\ m) axb(mod m)有解的充要条件是 ( a , m ) ∣ b (a,m)|b (a,m)b,且当其有解时,其解数为 ( a , m ) (a,m) (a,m)

证明

  先证明必要性。
  设同余方程 a x ≡ b ( m o d   m ) ax\equiv b(mod\ m) axb(mod m)有解,解为 x 0 x_0 x0,则存在整数 k k k,使得
a x 0 = k m + b ax_0=km+b ax0=km+b

b = a x 0 − k m b=ax_0-km b=ax0km
  由于 ( a , m ) ∣ a (a,m)|a (a,m)a ( a , m ) ∣ m (a,m)|m (a,m)m,因此
( a , m ) ∣ a x 0 − k m = b (a,m)|ax_0-km=b (a,m)ax0km=b
  再证明充分性。
  设 a ′ = a ( a , m ) a'=\frac{a}{(a,m)} a=(a,m)a m ′ = m ( a , m ) m'=\frac{m}{(a,m)} m=(a,m)m b ′ = b ( a , m ) b'=\frac{b}{(a,m)} b=(a,m)b,易知, a ′ a' a m ′ m' m b ′ b' b均为整数。
  首先考虑同余方程
a ′ x ≡ 1    ( m o d   m ′ ) a'x\equiv1\ \ (mod\ m') ax1  (mod m)
因为 g c d ( a ′ , m ′ ) = 1 gcd(a',m')=1 gcd(a,m)=1,可知 a ′ a' a存在模 m ′ m' m的乘法逆元 x 0 x_0 x0。满足 a ′ x 0 ≡ 1 ( m o d   m ′ ) a'x_0\equiv1(mod\ m') ax01(mod m),且在模 m ′ m' m下,逆元是唯一的,即同余方程 a ′ x ≡ 1 ( m o d   m ′ ) a'x\equiv1(mod\ m') ax1(mod m)存在唯一解
x ≡ x 0    ( m o d   m ′ ) x\equiv x_0\ \ (mod\ m') xx0  (mod m)
因此,易知同余方程
a ′ x ≡ b ′    ( m o d   m ′ ) a'x\equiv b'\ \ (mod\ m') axb  (mod m)
也存在唯一解
x ≡ x 1 ≡ x 0 b ′    ( m o d   m ′ ) x\equiv x_1\equiv x_0b'\ \ (mod\ m') xx1x0b  (mod m)
  下面证明这个解也是 a x ≡ b ( m o d   m ) ax\equiv b(mod\ m) axb(mod m)的特解。
  不妨设 x = k 1 m ′ + x 0 b ′ , k 1 ∈ Z x=k_1m'+x_0b',k_1∈Z x=k1m+x0b,k1Z
a x = a k 1 m ′ + a x 0 b ′ = a k 1 m ( a , m ) + a x 0 b ( a , m ) = a ′ k 1 m + a ′ x 0 b ≡ a ′ x 0 b ( m o d   m ) ax=ak_1m'+ax_0b'=ak_1\frac{m}{(a,m)}+ax_0\frac{b}{(a,m)}=a'k_1m+a'x_0b\equiv a'x_0b(mod\ m) ax=ak1m+ax0b=ak1(a,m)m+ax0(a,m)b=ak1m+ax0bax0b(mod m)
  由于 a ′ x 0 ≡ 1 ( m o d   m ′ ) a'x_0\equiv1(mod\ m') ax01(mod m),不妨设 a ′ x 0 = k 2 m ′ + 1 , k 2 ∈ Z a'x_0=k_2m'+1,k_2∈Z ax0=k2m+1,k2Z
a ′ x 0 b = ( k 2 m ′ + 1 ) b = k 2 m ′ b + b = k 2 m ( a , m ) b + b = k 2 m b ′ + b ≡ b ( m o d   m ) a'x_0b=(k_2m'+1)b=k_2m'b+b=k_2\frac{m}{(a,m)}b+b=k_2mb'+b\equiv b(mod\ m) ax0b=(k2m+1)b=k2mb+b=k2(a,m)mb+b=k2mb+bb(mod m)
最后, a x ≡ b ( m o d   m ) ax\equiv b(mod\ m) axb(mod m)的全部解为
x ≡ x 1 + t m ( a , m )   ( m o d   m ) t = 0 , 1 , … , ( a , m ) − 1 x\equiv x_1+t\frac{m}{(a,m)}\ (mod\ m)\qquad t=0,1,\dots,(a,m)-1 xx1+t(a,m)m (mod m)t=0,1,,(a,m)1
其原因是:如果同时有同余式
a x ≡ b   ( m o d   m ) a x 1 ≡ b   ( m o d   m ) ax\equiv b\ (mod\ m)\qquad ax_1\equiv b\ (mod\ m) axb (mod m)ax1b (mod m)
成立,两式相减得到
a ( x − x 1 ) ≡ 0   ( m o d   m ) a(x-x_1)\equiv0\ (mod\ m) a(xx1)0 (mod m)
这等价于
x ≡ x 1   ( m o d   m ( a , m ) ) x\equiv x_1\ (mod\ \frac{m}{(a,m)}) xx1 (mod (a,m)m)
因此, x x x只要与 x 1 x_1 x1关于 m ( a , m ) \frac{m}{(a,m)} (a,m)m同余,即为 a x ≡ b   ( m o d   m ) ax\equiv b\ (mod\ m) axb (mod m)的解。

定理3.2

  设 m m m是一个正整数, a a a是满足 ( a , m ) ∣ b (a,m)|b (a,m)b的整数,则一次同余式
a x ≡ b   ( m o d   m ) ax\equiv b\ (mod\ m) axb (mod m)
的全部解为
x ≡ ( ( a ( a , m ) ) − 1 ( m o d   m ( a , m ) ) ) b ( a , m ) + t m ( a , m )   ( m o d   m ) t = 0 , 1 , … , ( a , m ) − 1 x\equiv((\frac{a}{(a,m)})^{-1}(mod\ \frac{m}{(a,m)}))\frac{b}{(a,m)}+t\frac{m}{(a,m)}\ (mod\ m)\quad t=0,1,\dots,(a,m)-1 x(((a,m)a)1(mod (a,m)m))(a,m)b+t(a,m)m (mod m)t=0,1,,(a,m)1

例题

例题1

  求解同余方程 6 x ≡ 5   ( m o d   8 ) 6x\equiv5\ (mod\ 8) 6x5 (mod 8)
  因为 ( 6 , 8 ) ∤ 5 (6,8)∤5 (6,8)5,由定理3.1知,同余方程无解。

例题2

  求解同余方程 3 x ≡ 5   ( m o d   8 ) 3x\equiv5\ (mod\ 8) 3x5 (mod 8)
  因为 ( 3 , 8 ) ∣ 5 (3,8)|5 (3,8)∣5,所以同余方程有解。
  先解同余方程 3 x ≡ 1 ( m o d   8 ) 3x\equiv1(mod\ 8) 3x1(mod 8),此方程解唯一,易知其解为 x ≡ 3 ( m o d   8 ) x\equiv3(mod\ 8) x3(mod 8),则同余方程
3 x ≡ 5   ( m o d   8 ) 3x\equiv5\ (mod\ 8) 3x5 (mod 8)
也存在唯一解
x ≡ 3 × 5 ≡ 7   ( m o d   8 ) x\equiv3\times5\equiv7\ (mod\ 8) x3×57 (mod 8)
即为原方程的解。

例题3

  求解同余方程 6 x ≡ 2 ( m o d   8 ) 6x\equiv2(mod\ 8) 6x2(mod 8)
  因为 ( 6 , 8 ) ∣ 2 (6,8)|2 (6,8)∣2,所以同余方程有解。
  先解同余方程 3 x ≡ 1 ( m o d   4 ) 3x\equiv1(mod\ 4) 3x1(mod 4),此方程解唯一,易知其解为 x ≡ 3 ( m o d   4 ) x\equiv3(mod\ 4) x3(mod 4),则同余方程
3 x ≡ 2   ( m o d   4 ) 3x\equiv2\ (mod\ 4) 3x2 (mod 4)
也存在唯一解
x ≡ 3 × 1 + t × 4   ( m o d   8 ) t = 0 , 1 x\equiv3\times1+t\times4\ (mod\ 8)\qquad t=0,1 x3×1+t×4 (mod 8)t=0,1
为原方程的解。原方程的所有解为
x ≡ 3   ( m o d   8 ) x ≡ 3 + 4 ≡ 7 ( m o d   8 ) x\equiv3\ (mod\ 8)\qquad x\equiv3+4\equiv7(mod\ 8) x3 (mod 8)x3+47(mod 8)

例题4

  求解同余方程 6 x ≡ 4 ( m o d   8 ) 6x\equiv4(mod\ 8) 6x4(mod 8)
  因为 ( 6.8 ) ∣ 4 (6.8)|4 (6.8)∣4,所以同余方程有解.
  先解同余方程 3 x ≡ 1 ( m o d   4 ) 3x\equiv1(mod\ 4) 3x1(mod 4),此方程解唯一,易知其解为
x ≡ 3   ( m o d   4 ) x\equiv3\ (mod\ 4) x3 (mod 4)
  同余方程
3 x ≡ 2   ( m o d   4 ) 3x\equiv2\ (mod\ 4) 3x2 (mod 4)
也存在唯一解
x ≡ x 1 ≡ x 0 b ′ ≡ 3 × 2 ≡ 2   ( m o d   4 ) x\equiv x_1\equiv x_0b'\equiv3\times2\equiv2\ (mod\ 4) xx1x0b3×22 (mod 4)
  取 x 1 = 2 x_1=2 x1=2,则
x = x 1 + 8 2 t = 2 + 4 t ( t = 0 , 1 )   ( m o d   8 ) x=x_1+\frac{8}{2}t=2+4t\quad(t=0,1)\ (mod\ 8) x=x1+28t=2+4t(t=0,1) (mod 8)
为原方程的解。原方程的所有解为
x ≡ 2   ( m o d   8 ) x ≡ 6   ( m o d   8 ) x\equiv2\ (mod\ 8)\qquad x\equiv6\ (mod\ 8) x2 (mod 8)x6 (mod 8)


总结

  本文主要介绍了一次同余式及一次同余式的求解过程。

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值