信息安全数学基础——简化剩余系、欧拉定理与费马小定理


定义2.4

  一个模 m m m的剩余类叫作简化剩余类,如果该类中存在一个与 m m m互素的剩余,模 m m m的简化剩余类的全体所组成的集合写成
( Z / m Z ) ∗ = { C a ∣ 0 ≤ a ≤ m − 1 , ( a , m ) = 1 } (Z/mZ)^*=\lbrace{C_a}|0≤a≤m-1,(a,m)=1\rbrace (Z/mZ)={Ca∣0am1,(a,m)=1}
特别地,当 m = p m=p m=p为素数时,也写成
F p ∗ = ( Z / p Z ) ∗ = { C 1 , . . . , C p − 1 } = { C a ∣ 0 ≤ a ≤ p − 1 } = F p ∖ { C 0 } F_p^*=(Z/pZ)^*=\lbrace{C_1,...,C_{p-1}}\rbrace=\lbrace{C_a|0≤a≤p-1}\rbrace=F_p\setminus\{C_0\} Fp=(Z/pZ)={C1,...,Cp1}={Ca∣0ap1}=Fp{C0}

例题1

  设 m = 12 m=12 m=12,则模 m m m的简化剩余类为 { C 1 , C 5 , C 7 , C 11 } \{C_1,C_5,C_7,C_{11}\} {C1,C5,C7,C11}

例题2

  设 m = 7 m=7 m=7,则模 m m m的简化剩余类为 { C 1 , C 2 , C 3 , C 4 , C 5 , C 6 } \{C_1,C_2,C_3,C_4,C_5,C_6\} {C1,C2,C3,C4,C5,C6}

定义2.5

  设 m m m是一个正整数,在模 m m m的所有不同简化剩余类中,从每个类任取一个数组成的整数集合,叫作模 m m m的一个简化剩余系,也称之为既约剩余系、缩剩余系、缩系。

例题3

  设 m = 12 m=12 m=12,则 1 1 1 5 5 5 7 7 7 11 11 11构成模 12 12 12的简化剩余系。

例题4

  设 m = 7 m=7 m=7,则 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6构成模 7 7 7的简化剩余系。

定义2.6

  设 m m m是一个正整数,则 m m m个整数 0 0 0 1 1 1,…, m − 1 m-1 m1中与 m m m互素的整数的个数,记为 ϕ ( m ) \phi(m) ϕ(m),叫作 E u l e r Euler Euler函数。
  例如, ϕ ( 2 ) = 1 \phi(2)=1 ϕ(2)=1,约定 ϕ ( 1 ) = 1 \phi(1)=1 ϕ(1)=1
  显然,模 m m m的简化剩余类的个数为 ϕ ( m ) \phi(m) ϕ(m),即 ∣ ( Z / m Z ) ∗ ∣ = ϕ ( m ) |(Z/mZ)^*|=\phi(m) (Z/mZ)=ϕ(m)。模 m m m的简化剩余系的元素个数为 ϕ ( m ) \phi(m) ϕ(m)

定理2.9

  设 m m m是正整数,则 ϕ ( m ) \phi(m) ϕ(m)个整数 a 1 a_1 a1 a 2 a_2 a2,…, a ϕ ( m ) a_{\phi(m)} aϕ(m)为模 m m m的一个简化剩余系的充要条件是它们与 m m m互素,且模 m m m两两不同余。

定理2.10

  设 m m m是正整数,整数 a a a满足 ( a , m ) = 1 (a,m)=1 (a,m)=1。若 x x x遍历模 m m m的一个简化剩余系,则 a x ax ax也遍历模 m m m的一个简化剩余系。

证明

  因为 ( a , m ) = 1 (a,m)=1 (a,m)=1 ( x , m ) = 1 (x,m)=1 (x,m)=1,于是 ( a x , m ) = 1 (ax,m)=1 (ax,m)=1。故 a x ax ax m m m的简化剩余类的剩余。然后只需要证明 a a 1 aa_1 aa1 a a 2 aa_2 aa2,…, a a ϕ ( m ) aa_{\phi(m)} aaϕ(m) ϕ ( m ) \phi(m) ϕ(m)个数模 m m m两两不同余即可。若存在 a i a_i ai a j a_j aj i ≠ j i≠j i=j,使得
a a i ≡ a a j ( m o d   m ) aa_i\equiv{aa_j}(mod\ m) aaiaaj(mod m)
则有 m ∣ a ( a i − a j ) m|a(a_i-a_j) ma(aiaj),由于 ( a , m ) = 1 (a,m)=1 (a,m)=1,所以 a i ≡ a j ( m o d   m ) a_i\equiv{a_j}(mod\ m) aiaj(mod m)。这与 a 1 a_1 a1 a 2 a_2 a2,…, a ϕ ( m ) a_{\phi(m)} aϕ(m) m m m两两不同余矛盾。因此, a x ax ax也遍历模 m m m的一个简化剩余系。

例题5

  若 p p p为素数,则 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1

例题6

  若 p p p为素数,且整数 α ≥ 1 α≥1 α1,则
ϕ ( p α ) = p α − p α − 1 = p α ( 1 − 1 / p ) \phi(p^α)=p^α-p^{α-1}=p^α(1-1/p) ϕ(pα)=pαpα1=pα(11/p)
  因为 0 0 0 1 1 1 2 2 2,…, p α − 1 p^α-1 pα1 p α p^α pα不互素的数只有 p p p的倍数,有 p α − 1 p^{α-1} pα1个,即 0 0 0 p p p 2 p 2p 2p,…, ( p α − 1 − 1 ) p (p^{α-1}-1)p (pα11)p

例题7

  若 p p p q q q为不同的素数, n = p q n=pq n=pq,则
ϕ ( n ) = ( p − 1 ) ( q − 1 ) = ϕ ( p ) ϕ ( q ) \phi(n)=(p-1)(q-1)=\phi(p)\phi(q) ϕ(n)=(p1)(q1)=ϕ(p)ϕ(q)
   0 0 0 1 1 1,…, n − 1 n-1 n1 p p p的倍数有 q q q个,即 0 0 0 p p p 2 p 2p 2p,…, p ( q − 1 ) p(q-1) p(q1);同时, q q q的倍数有 p p p个,即 0 0 0 q q q 2 q 2q 2q,…, ( p − 1 ) q (p-1)q (p1)q。这其中有重合的,即为 p q pq pq的倍数有 0 0 0。因此,与 n n n不互素的数有 q + p − 1 q+p-1 q+p1个,与 n n n互素的数有
n − ( p + q − 1 ) = p q − p − q + 1 = ( p − 1 ) ( q − 1 ) = ϕ ( p ) ϕ ( q ) n-(p+q-1)=pq-p-q+1=(p-1)(q-1)=\phi(p)\phi(q) n(p+q1)=pqpq+1=(p1)(q1)=ϕ(p)ϕ(q)
个。

例题8

   ϕ ( 77 ) = ϕ ( 7 ) ϕ ( 11 ) = 6 × 10 = 60 \phi(77)=\phi(7)\phi(11)=6\times10=60 ϕ(77)=ϕ(7)ϕ(11)=6×10=60

定理2.11

  设正整数 n n n的标准分解式为
n = ∏ p ∣ n p α = p 1 α 1 p 2 α 2 … p k α k n=\prod_{p|n}p^α=p_1^{α_1}p_2^{α_2}\dots{p_k^{α_k}} n=pnpα=p1α1p2α2pkαk

ϕ ( n ) = n ∏ p ∣ n ( 1 − 1 p ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) … ( 1 − 1 p k ) \phi(n)=n\prod_{p|n}(1-\frac{1}{p})=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\dots(1-\frac{1}{p_k}) ϕ(n)=npn(1p1)=n(1p11)(1p21)(1pk1)

证明

  当 n = p α n=p^α n=pα时,模 n n n的完全剩余系 0 , 1 , … , p α − 1 {0,1,\dots,p^α-1} 0,1,,pα1 p α p^α pα个整数中,与 p p p不互素的只有 p p p的倍数,共有 p α − 1 p^{α-1} pα1个(即 0 0 0 p p p 2 p 2p 2p … \dots ( p α − 1 − 1 ) p (p^{α-1}-1)p (pα11)p),因此,与 p α p^α pα互素的数共有 p α − p α − 1 p^α-p^{α-1} pαpα1个数,即
ϕ ( p α ) = p α − p α − 1 = p α ( 1 − 1 p ) \phi(p^α)=p^α-p^{α-1}=p^α(1-\frac{1}{p}) ϕ(pα)=pαpα1=pα(1p1)
由定理2.11,得出
ϕ ( n ) = ϕ ( p 1 α 1 ) ϕ ( p 2 α 2 ) … ϕ ( p k α k ) \phi(n)=\phi(p_1^{α_1})\phi(p_2^{α_2})\dots\phi(p_k^{α_k}) ϕ(n)=ϕ(p1α1)ϕ(p2α2)ϕ(pkαk)
ϕ ( n ) = p 1 α 1 ( 1 − 1 p 1 ) p 2 α 2 ( 1 − 1 p 2 ) … p k α k ( 1 − 1 p k ) \phi(n)=p_1^{α_1}(1-\frac{1}{p_1})p_2^{α_2}(1-\frac{1}{p_2})\dots{p_k^{α_k}(1-\frac{1}{p_k})} ϕ(n)=p1α1(1p11)p2α2(1p21)pkαk(1pk1)
ϕ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) … ( 1 − 1 p k ) \phi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\dots(1-\frac{1}{p_k}) ϕ(n)=n(1p11)(1p21)(1pk1)

推论2.1

  设 m m m n n n是互素的两个正整数,则
ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn)=\phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n)

例题9

   ϕ ( 30 ) = ϕ ( 2 ) ϕ ( 3 ) ϕ ( 5 ) = 1 × 2 × 4 = 8 \phi(30)=\phi(2)\phi(3)\phi(5)=1\times2\times4=8 ϕ(30)=ϕ(2)ϕ(3)ϕ(5)=1×2×4=8
  注意: E u l e r Euler Euler函数不是严格的乘性函数 ( f ( x y ) = f ( x ) f ( y ) ) (f(xy)=f(x)f(y)) (f(xy)=f(x)f(y)),只有在互素情况下才具有乘性。

例题10

   ϕ ( 2 × 4 ) = ϕ ( 8 ) = 8 ( 1 − 1 2 ) = 4 ≠ ϕ ( 2 ) ϕ ( 4 ) = 2 \phi(2\times4)=\phi(8)=8(1-\frac{1}{2})=4≠\phi(2)\phi(4)=2 ϕ(2×4)=ϕ(8)=8(121)=4=ϕ(2)ϕ(4)=2
   ϕ ( 3 × 6 ) = ϕ ( 3 2 ) ϕ ( 2 ) = 9 ( 1 − 1 3 ) × 1 = 6 ≠ ϕ ( 3 ) ϕ ( 6 ) = 2 × 2 = 4 \phi(3\times6)=\phi(3^2)\phi(2)=9(1-\frac{1}{3})\times1=6≠\phi(3)\phi(6)=2\times2=4 ϕ(3×6)=ϕ(32)ϕ(2)=9(131)×1=6=ϕ(3)ϕ(6)=2×2=4

例题11

  设 n = p q n=pq n=pq p p p q q q均为素数,则可由 ϕ ( n ) \phi(n) ϕ(n) n n n求出 p p p q q q

定理2.12(Euler定理)

  设 m m m是大于 1 1 1的整数,如果 a a a是满足 ( a , m ) = 1 (a,m)=1 (a,m)=1的整数,则
a ϕ ( m ) ≡ 1   ( m o d   m ) a^{\phi(m)}\equiv1\ (mod\ m) aϕ(m)1 (mod m)

证明

  设 r 1 r_1 r1 r 2 r_2 r2 … \dots r ϕ ( m ) r_{\phi(m)} rϕ(m)是模 m m m的一组简化剩余系,根据定理2.10
a r 1 , a r 2 , … , a r ϕ ( m ) ar_1,ar_2,\dots,ar_{\phi(m)} ar1,ar2,,arϕ(m)
也是模 m m m的一组简化剩余系,因此
( a r 1 ) × ( a r 2 ) … ( a r ϕ ( m ) ) ≡ r 1 × r 2 × ⋯ × r ϕ ( m ) ( m o d   m ) (ar_1)\times(ar_2)\dots(ar_{\phi(m)})\equiv{r_1}\times{r_2}\times\dots\times{r_{\phi(m)}}(mod\ m) (ar1)×(ar2)(arϕ(m))r1×r2××rϕ(m)(mod m)

a ϕ ( m ) × ( r 1 × r 2 × ⋯ × r ϕ ( m ) ) ≡ r 1 × r 2 × ⋯ × r ϕ ( m ) ( m o d   m ) a^{\phi(m)}\times(r_1\times{r_2}\times\dots\times{r_{\phi(m)}})\equiv{r_1}\times{r_2}\times\dots\times{r_{\phi(m)}}(mod\ m) aϕ(m)×(r1×r2××rϕ(m))r1×r2××rϕ(m)(mod m)
( r 1 × r 2 × ⋯ × r ϕ ( m ) , m ) = 1 (r_1\times{r_2}\times\dots\times{r_{\phi(m)}},m)=1 (r1×r2××rϕ(m),m)=1,所以
a ϕ ( m ) ≡ 1 ( m o d   m ) a^{\phi(m)}\equiv1(mod\ m) aϕ(m)1(mod m)

推论2.2(Fermat小定理)

  设 p p p是一个素数,则对于任意整数 a a a,均有
a p ≡ a ( m o d   p ) a^p\equiv{a}(mod\ p) apa(mod p)

证明

  若 p ∣ a p|a pa,则 a p ≡ 0 ( m o d   p ) a^p\equiv0(mod\ p) ap0(mod p) a ≡ 0 ( m o d   p ) a\equiv0(mod\ p) a0(mod p),所以 a p ≡ a ( m o d   p ) a^p\equiv{a}(mod\ p) apa(mod p)。若 p ∤ a p∤a pa,则 ( p , a ) = 1 (p,a)=1 (p,a)=1,根据 E u l e r Euler Euler定理,有 a ϕ ( p ) = a p − 1 ≡ 1 ( m o d   p ) a^{\phi(p)}=a^{p-1}\equiv1(mod\ p) aϕ(p)=ap11(mod p),于是有 a p ≡ a ( m o d   p ) a^p\equiv{a}(mod\ p) apa(mod p)

推论2.3

  若 p p p是素数, a a a是整数,且 p ∤ a p∤a pa,则 a . a p − 2 = 1 ( m o d   p ) a.a^{p-2}=1(mod\ p) a.ap2=1(mod p)(即 a p − 2 a^{p-2} ap2 a a a p p p的逆元)。

定理2.13(Wilson定理)

  设 p p p是一个素数,则
( p − 1 ) ! ≡ − 1 ( m o d   p ) (p-1)!\equiv-1(mod\ p) (p1)!1(mod p)

证明

  若 p = 2 p=2 p=2,结论显然成立。
  若 p ≥ 3 p≥3 p3,根据定理2.10,对于每个整数 a ( 1 ≤ a ≤ p − 1 ) a(1≤a≤p-1) a(1ap1),存在唯一的整数 a ′ ( 1 ≤ a ≤ p − 1 ) a'(1≤a≤p-1) a(1ap1),使得
a a ′ ≡ 1 ( m o d   p ) aa'\equiv1(mod\ p) aa1(mod p)
a = a ′ a=a' a=a的充要条件是 a a a满足
a 2 ≡ 1 ( m o d   p ) a^2\equiv1(mod\ p) a21(mod p)
此时, a = 1 a=1 a=1或者 p − 1 p-1 p1
  因此,当 a ∈ { 2 , 3 , … , p − 2 } a∈\{2,3,\dots,p-2\} a{2,3,,p2}时,有 a ′ ∈ { 2 , 3 , … , p − 2 } a'∈\{2,3,\dots,p-2\} a{2,3,,p2},因此, { 2 , 3 , … , p − 2 } \{2,3,\dots,p-2\} {2,3,,p2}中的 a a a a ′ a' a两两配对。于是, 2 × 3 × ⋯ × ( p − 2 ) ≡ 1 ( m o d   p ) 2\times3\times\dots\times(p-2)\equiv1(mod\ p) 2×3××(p2)1(mod p)
( p − 1 ) ! ≡ 1 × 2 × 3 × ⋯ × ( p − 2 ) × ( p − 1 ) ≡ 1 × ( p − 1 ) = − 1 ( m o d   p ) (p-1)!\equiv1\times2\times3\times\dots\times(p-2)\times(p-1)\equiv1\times(p-1)=-1(mod\ p) (p1)!1×2×3××(p2)×(p1)1×(p1)=1(mod p)


总结

  本文主要介绍了Euler定理、Fermat小定理和Wilson定理。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值