【笔记】通信原理 第二章 确知信号

本文详细阐述了确知信号的分类、频域特性(包括功率信号和能量信号的频谱、能量谱密度和功率谱密度)、以及自相关函数和互相关函数的概念,强调了它们在傅里叶变换中的重要性,特别关注了周期性和非周期性信号的区别。
摘要由CSDN通过智能技术生成

第二章 确知信号

2.1确知信号的类型

确知信号是指其取值在任何时间都是确定的和可预知的信号。

​ 按照是否具有周期重复性,可以将确知信号分为周期信号和非周期信号。

​ 按照能量是否有限,可以将信号分为能量信号和功率信号。

能量信号:其能量等于一个有限正值,但平均功率为零。

功率信号:平均功率等于一个有限正值,但能量为无穷大。

2.2确知信号的频域性质

​ 信号的频率特性有四种:功率信号的频谱、能量信号的频谱密度、能量信号的能量谱密度、功率信号的功率谱密度。

2.2.1功率信号的频谱

​ 对于周期性功率信号,计算其频谱。假设一个周期性功率信号s(t)的周期为T0,则其可以展开为傅里叶级数
s ( t ) = ∑ n = − ∞ ∞ C n e j 2 π f 0 t / T 0 s . t . C n = C ( n f 0 ) = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) e − j 2 π n f 0 t d t s(t)=\sum_{n=-\infty}^{\infty}C_ne^{j2\pi f_0t/T_0}\\ s.t. C_n=C(nf_0)=\frac{1}{T_0}\int_{-T_0/2}^{T_0/2}s(t)e^{-j2\pi nf_0t}dt s(t)=n=Cnej2πf0t/T0s.t.Cn=C(nf0)=T01T0/2T0/2s(t)ej2πnf0tdt
​ 其中Cn为周期性功率信号的频谱。

​ 当n=0时,C0是信号s(t)的时间平均值,即直流分量。

​ 由于Cn是离散的,而且n可以取负数,所以Cn为双边离散谱。但其负频谱只在数学上有意义,在物理上并不存在。

​ 频谱函数的正频率部分和负频率部分存在复数共轭的关系,即
C − n = C n ∗ C_{-n}=C_n^* Cn=Cn
所以,负频谱和正频谱的模是偶对称,相位是奇对称。

​ 信号的傅里叶级数表达式可以推导为
s ( t ) = C 0 + ∑ n = 1 ∞ [ a n 2 + b n 2 c o s ( 2 π n t / T 0 + θ n ) ] s(t)=C_0+\sum_{n=1}^\infty [\sqrt{a_n^2+b_n^2}cos(2\pi nt/T_0+\theta_n)] s(t)=C0+n=1[an2+bn2 cos(2πnt/T0+θn)]
所以,各次谐波的振幅等于
a n 2 + b n 2 \sqrt{a_n^2+b_n^2} an2+bn2
相位为
θ n = − a r c t a n ( b n / a n ) \theta_n=-arctan(b_n/a_n) θn=arctan(bn/an)
PS:若s(t)不但是实信号,而且是偶信号,则Cn也为偶函数。

2.2.2能量信号的频谱密度

设一个能量信号为s(t),则其傅里叶变换S(f)定义为它的频谱密度
S ( f ) = ∫ − ∞ ∞ s ( t ) e − j 2 π f t d t S(f)=\int_{-\infty}^\infty s(t)e^{-j2\pi ft}dt S(f)=s(t)ej2πftdt
S(f)和Cn的区别:

  1. S(f)是连续谱,Cn是离散谱。
  2. S(f)的单位是V/Hz,Cn的单位是V。

实能量信号的频谱密度和实功率信号的频谱都是负频谱和正频谱的模偶对称,相位奇对称。

2.2.3能量信号的能量谱密度

​ 设一个能量信号s(t)的能量为E,则此信号的能量为
E = ∫ − ∞ ∞ s 2 ( t ) d t E=\int_{-\infty}^{\infty}s^2(t)dt E=s2(t)dt
​ 由帕斯瓦尔定理可知,能量谱密度为
G ( f ) = ∣ S ( f ) ∣ 2 ( J / H z ) G(f)=|S(f)|^2(J/Hz) G(f)=S(f)2(J/Hz)
​ 能量表示为
E = 2 ∫ 0 ∞ G ( f ) d f E=2\int_0^\infty G(f)df E=20G(f)df

2.2.4功率信号的功率谱密度

由于功率信号具有无穷大的能量,所以不能计算功率信号的能量谱密度,但是可以求出它的功率谱密度。

​ 首先将功率信号s(t)截短为一个长度为T的信号sT(t),sT(t)为一个能量信号,对于该信号,求出其能量谱密度|ST(f)|2,则功率信号的功率谱密度为
P ( f ) = lim ⁡ T → ∞ 1 T ∣ S T ( f ) ∣ 2 P(f)=\lim_{T \to \infty}\frac{1}{T}|S_T(f)|^2 P(f)=TlimT1ST(f)2
​ 信号功率为
P = ∫ − ∞ ∞ P ( f ) d f P=\int _{-\infty}^{\infty}P(f)df P=P(f)df
​ 若此功率信号具有周期性,则
P = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 s 2 ( t ) d t = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s 2 ( t ) d t = ∑ n = − ∞ ∞ ∣ C n ∣ 2 P=\lim_{T \to \infty}\frac{1}{T}\int_{-T/2}^{T/2}s^2(t)dt=\frac{1}{T_0}\int_{-T_0/2}^{T_0/2}s^2(t)dt=\sum_{n=-\infty}^{\infty}|C_n|^2 P=TlimT1T/2T/2s2(t)dt=T01T0/2T0/2s2(t)dt=n=Cn2
所以,若f0是信号的基波频率,则Cn是信号的第n次谐波的振幅,|Cn|2是第n次谐波的功率,可以称为信号的离散功率谱。

​ 同时,也可以利用 δ \delta δ 函数的性质,用连续的功率谱密度表示此离散谱,
KaTeX parse error: Undefined control sequence: \C at position 101: …)=\begin{cases}\̲C̲_n,&f=nf_0\\0,&…

2.3确知信号的时域性质

2.3.1能量信号的自相关函数

​ 能量函数s(t)的自相关函数的定义为
R ( τ ) = ∫ − ∞ ∞ s ( t ) s ( t + τ ) d t        − ∞ < τ < ∞ R(\tau)=\int_{-\infty}^{\infty}s(t)s(t+\tau)dt ~~~~~~ -\infty <\tau<\infty R(τ)=s(t)s(t+τ)dt      <τ<
​ 自相关函数反映了一个信号与延迟 τ \tau τ后的同一信号间的关联程度。自相关函数 R ( τ ) R(\tau) R(τ)与时间t无关,只与时间差 τ \tau τ有关。当 τ = 0 \tau=0 τ=0时,能量信号的自相关函数等于信号的能量。

PS:自相关函数是关于 τ \tau τ的偶函数。

能量信号的自相关函数的傅里叶变换就是其能量谱密度。 R ( τ ) R(\tau) R(τ) ∣ S ( f ) ∣ 2 |S(f)|^2 S(f)2构成一对傅里叶变换。
R ( τ ) = ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 e j 2 π f τ d f R(\tau)=\int_{-\infty}^{\infty}|S(f)|^2e^{j2\pi f\tau }df R(τ)=S(f)2ej2πfτdf

2.3.2功率信号的自相关函数

​ 功率信号s(t)的自相关函数定义为
R ( τ ) = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 s ( t ) s ( t + τ ) d t       − ∞ < τ < ∞ R(\tau)=\lim_{T \to \infty}\frac{1}{T}\int_{-T/2}^{T/2}s(t)s(t+\tau)dt~~~~~-\infty<\tau<\infty R(τ)=TlimT1T/2T/2s(t)s(t+τ)dt     <τ<
τ = 0 \tau=0 τ=0时,功率信号的自相关函数R(0)等于信号的平均功率。

PS:自相关函数同样是关于 τ \tau τ的偶函数。

​ 周期性功率信号的自相关函数 R ( τ ) R(\tau) R(τ)和其功率谱密度 P ( f ) P(f) P(f)之间是傅里叶变换关系。

2.3.3能量信号的互相关函数

​ 两个能量信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)的互相关函数为
R 12 ( τ ) = ∫ − ∞ ∞ s 1 ( t ) s 2 ( t + τ ) d t      − ∞ < τ < ∞ R_{12}(\tau)=\int_{-\infty}^\infty s_1(t)s_2(t+\tau)dt~~~~-\infty<\tau<\infty R12(τ)=s1(t)s2(t+τ)dt    <τ<
互相关函数反应了一个信号和延迟 τ \tau τ后另一个信号间相关的程度。

PS:互相关函数和两个信号相乘的前后次序有关。
R 21 ( τ ) = R 12 ( − τ ) R_{21}(\tau)=R_{12}(-\tau) R21(τ)=R12(τ)
​ 互相关函数和信号能量谱密度的关系为
R 12 ( τ ) = ∫ − ∞ ∞ S 12 ( f ) e j 2 π f τ d f R_{12}(\tau)=\int_{-\infty}^\infty S_{12}(f)e^{j2\pi f\tau}df R12(τ)=S12(f)ej2πfτdf
其中, S 12 ( f ) = S 1 ∗ ( f ) S 2 ( f ) S_{12}(f)=S_1^*(f)S_2(f) S12(f)=S1(f)S2(f),称为互能量谱密度。

​ 互相关函数和互能量谱密度是一对傅里叶变换。

2.3.4功率信号的互相关函数

​ 两个功率信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)的互相关函数为
R 12 ( τ ) = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 s 1 ( t ) s 2 ( t + τ ) d t      − ∞ < τ < ∞ R_{12}(\tau)=\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}s_1(t)s_2(t+\tau)dt~~~~-\infty<\tau<\infty R12(τ)=TlimT1T/2T/2s1(t)s2(t+τ)dt    <τ<
​ 若两个周期性功率信号的周期相同,则其互相关函数的定义为
R 12 ( τ ) = 1 T ∫ − T / 2 T / 2 s 1 ( t ) s 2 ( t + τ ) d t      − ∞ < τ < ∞ R_{12}(\tau)=\frac{1}{T}\int_{-T/2}^{T/2}s_1(t)s_2(t+\tau)dt~~~~-\infty<\tau<\infty R12(τ)=T1T/2T/2s1(t)s2(t+τ)dt    <τ<
其中T为信号的周期。

​ 功率信号的互相关函数和其功率谱之间也有傅里叶变换关系。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值