【雷达原理】第五章:作用距离
《雷达原理》各章内容与链接
第一章:绪论
第二章:发射机
第三章:接收机
第四章:显示器
第五章:作用距离
第六章:距离测量
第七章:角度测量
第八章:速度测量
学习链接见哔哩大学
一.雷达方程
1.基本雷达方程
理想无损耗、自由空间传播的单基地雷达方程。接收回波功率 (假设信号从天线方向图最大增益
处发射、接收,并且不考虑传输损耗):
P r = P t G t 4 π R 2 δ A r 4 π R 2 P_r=\frac{P_tG_t}{4\pi R^2}\delta\frac{A_r}{4\pi R^2} Pr=4πR2PtGtδ4πR2Ar
A r A_r Ar表示雷达天线有效接收面积。接收到的回波功率 P r P_{r} Pr必须超过最小可检测信号功率 S i m i n S_{imin} Simin , 雷达才能发现目标,当 P r P_r Pr正好等于 S i m i n S_{imin} Simin时,就可得到雷达检测该目标的最大作用距离 R m a x R_{max} Rmax
(1),收发不同天线
R m a x = [ P t G t G r λ 2 δ ( 4 π ) 3 S i m i n ] 1 / 4 R_{max}=[\frac{P_tG_tG_r\lambda^2\delta}{(4\pi)^3S_{imin}}]^{1/4} Rmax=[(4π)3SiminPtGtGrλ2δ]1/4
(2),收发天线共用(2),
R m a x = [ P t G t 2 λ 2 δ ( 4 π ) 3 S i m i n ] 1 / 4 R_{max}=[\frac{P_t{G_t}^2\lambda^2\delta}{(4\pi)^3S_{imin}}]^{1/4} Rmax=[(4π)3SiminPtGt2λ2δ]1/4
雷达总是在噪声和其他干扰背景下检测目标,因此接收机的输出是一个随机量。故雷达作用距离不是一个确定值而是统计值。因此,不能简单说雷达的作用距离是多少。通常只在概率意义上讲,当虚警概率和发现概率给定时的作用距离是多大。
2,目标的雷达截面积
雷达是通过目标的二次散射功率来发现目标的。
P 2 = S 1 σ P_2=S_1\sigma P2=S1σ
σ = P 2 S 1 \sigma=\frac{P_2}{S_1} σ=S1P2
P 2 P_2 P2为目标散射的总功率, S 1 S_{1} S1为照射的功率密度。
二,最小可检测信号
1,最小可检测信号与信噪比
如果只有信号而没有噪声,任何微弱信号在理论上都可以经过任意放大之后被检测到,因此,雷达检测能力实际上取决于信号噪声比。
S i m i n = k T 0 B n F n M S_{imin}=kT_0B_nF_nM Simin=kT0BnFnM
M M M称为识别系数,又叫检测因子 D 0 D_0 D0 。定义为接收机匹配滤波器输出端(检波器输入端)测量的信号噪声功率比。
M = ( S N ) o m i n M=(\frac{S}{N})_{omin} M=(NS)omin
将 S i m i n S_{imin} Simin带入雷达方程,得到:
R m a x = [ P t G t 2 λ 2 σ ( 4 π ) 3 k T 0 B n F n ( S N ) o m i n ] 1 / 4 = [ P t G t 2 λ 2 σ ( 4 π ) 3 k T 0 B n F n D 0 ] 1 / 4 R_{max}=[\frac{P_{t}G_{t}{}^{2}\lambda^{2}\sigma}{(4\pi)^{3}kT_{0}B_{n}F_{n}(\frac{S}{N})_{omin}}]^{1/4}\\=[\frac{P_{t}G_{t}{}^{2}\lambda^{2}\sigma}{(4\pi)^{3}kT_{0}B_{n}F_{n}D_{0}}]^{1/4} Rmax=[(4π)3kT0BnFn(NS)ominPtGt2λ2σ]1/4=[(4π)3kT0BnFnD0PtGt2λ2σ]1/4
2,门限检测
由于噪声的存在,判断信号是否出现就成了一个统计问题,必须根据某种统计检测标准进行判断。奈曼-皮尔逊淮则:要求在给定信噪比条件下,满足一定虚警概率 P f a P_{fa} Pfa时的发现概率 P d P_d Pd最大。接收检测系统首先在中频部分对单个脉冲信号进行匹配滤波,接着进行检波,通常是在 n n n个脉冲积累 + ^{+} +后再检测,将积累输出与某一门限电压进行比较,若输出包络超过门限,则认为有目标存在,否则认为没有目标,这就是检测门限。门限检测是一种统计检测,由于信号叠加有噪声,因而总输出是一个随机量。在输出端根据输出振幅是否超过门限来判断有无目标存在,可能出现以下四种情况
(1)无目标
判为有目标,称为虚警,其概率为虚警概率
P
f
a
P_{fa}
Pfa 。判为无目标,称为正确不发现,其概率称为正
确不发现概率
P
a
n
=
1
−
P
f
a
P_{an}= 1- P_{fa}
Pan=1−Pfa .
(2)有目标
判为有目标,称为发现,其概率称为发现概率
P
d
P_d
Pd;判为无目标,称为漏报,其概率称为漏报概
率
P
l
a
=
1
−
P
d
P_{la}= 1- P_{d}
Pla=1−Pd .
三,脉冲积累对作用距离的改善
1,积累效果
(1)相参积累
假设
ω
\omega
ω为天线扫描角速度。
θ
0.5
ω
\frac{\theta_{0.5}}\omega
ωθ0.5为扫过3dB 带宽所需时间,在此时间都,接收机都能接收到回波
信号。能接收到的脉冲积累个数为:
M = θ 0.5 ω f r M=\frac{\theta_{0.5}}{\omega}f_r M=ωθ0.5fr
T r = 1 / f r T_r=1/f_r Tr=1/fr为脉冲重复周期。
单个脉冲回波信号:
A
c
o
s
(
2
π
f
0
t
+
ϕ
0
)
Acos(2\pi f_0t+\phi_0)
Acos(2πf0t+ϕ0)
功率为 A 2 A^2 A2 。
M M M个脉冲相参积累之后
M A c o s ( 2 π f 0 t + ϕ 0 ) MAcos(2\pi f_0t+\phi_0) MAcos(2πf0t+ϕ0)
其功率为 M 2 A 2 M^2A^2 M2A2 ,噪声功率为 σ 2 \sigma^2 σ2 ,噪声为独立随机变量,相互之间并不相参,积累之后:
M σ 2 M\sigma ^{2} Mσ2 。
所以,信号噪声比:
M 2 A 2 M σ 2 = M A 2 σ 2 \begin{aligned}\frac{M^2A^2}{M\sigma^2}=M\frac{A^2}{\sigma^2}\end{aligned} Mσ2M2A2=Mσ2A2
相参积累之后,信噪比扩大 M 倍。
D 0 ( M ) : M D_0(M):M D0(M):M个脉冲积累之后,每一个脉冲所需的信噪比。因此有:
D 0 ( M ) = D 0 ( 1 ) M D_0(M)=\frac{D_0(1)}{M} D0(M)=MD0(1)
相参积累之后,最大作用距离变为
R m a x M 4 R_{max}\sqrt[4]{M} Rmax4M
(2)非相参积累
每个回波脉冲的初始相位是有变化的。所以,积累之后幅度不能增加 M M M倍。
2,脉冲积累数的确定
(1)机械扫描雷达
M = θ 0.5 ω f r M=\frac{\theta_{0.5}}{\omega}f_r M=ωθ0.5fr
ω \omega ω单位:度/s 。
(2)电扫描雷达
波束用电扫描的方法,常采用步进扫描方式,此时天线波束指向某特定的方向并在此方向上发射预置的脉冲数,然后波束指向新的方向进行辐射。用这种扫描方式时,接收到的脉冲数由预置的脉冲数决定而与波束宽度无关。
四,目标截面积及其起伏特性
1,点目标
(1)距离分辨率
距离分辨率,用于描述雷达分别探测出相邻目标的能力。
如果两个目标的间距至少为
c
τ
/
2
c\tau/2
cτ/2 ,那么当脉冲后沿撞上第一个目标时,这个脉冲的前沿才开始从第二个目标返回将产生两个分开的返回脉冲,如下图所示。当两个目标的间距小于
c
τ
/
2
c\tau/2
cτ/2时,返回的脉冲将包括两个目标的回波(即未分辨的回波)。将
c
τ
/
2
c\tau/2
cτ/2称为距离分辨率。
(2)角度分辨率
角度分辨率是由天线的波束宽度决定的。即使两个散射体位于同一距离的不同方位,只要它们都在天线的主瓣内,它们都会被同时照射到,它们的回波也会同时被雷达接收。我们这里采用天线的3dB 波束宽度作为主瓣宽度,这样位于波束 3dB 边缘的两个点散射体就定义了雷达的角度分辨率。
(3)雷达三维分辨单元
如果两个目标同时落在同一个距离单元,也在同一个角度单元,雷达就无法区分这两个目标,我们
就把距离单元和角度单元构成的一个三维单元称为雷达三维分辨单元。
如果目标体积满足:
V
<
Δ
V
V<\Delta V
V<ΔV,就称之为点目标
2,点目标特性与波长的关系
最理想的点目标是一个各向同性的球体。设
r
r
r为各向同性球体的半径
当雷达照射球体时,分为三种情况:
(1)瑞利区
λ > > 2 π r \lambda > > 2\pi r λ>>2πr, σ ∝ λ − 4 \sigma \propto \lambda ^{- 4} σ∝λ−4
(2)振荡区
λ ≈ 2 π r \lambda \approx 2\pi r λ≈2πr, σ \sigma σ在 π r \pi r πr附近振荡
(3)光学区
λ ≤ 2 π r , σ ≈ π r 2 \lambda\leq2\pi r,\:\sigma\approx\pi r^2 λ≤2πr,σ≈πr2
我们希望点目标处于光学区。实际上大多数目标都处在光学区
3,简单形状目标的雷达截面积
几何形状比较简单的目标,如球体、圆板、锥体等,它们的雷达截面积可以计算出来。
4,复杂目标的雷达截面积
复杂目标是指雷达实际要要探测的各种目标,如飞机、舰船、地物等。极坐标下飞机的雷达截面积如下图所示。
复杂目标的雷达截面积是不仅是视角的函数(也就是说雷达从不同方向照射目标,目标的雷达截面积会发生变化),同时也随频率、波长、极化等变化,通常雷达工作时,精确的目标姿态及视角是不知道的,因为目标运动时视角随时间变化。因此,最好是用统计的概念来描述雷达截面积。
5,目标反射特性与极化
无线电波的基本特性:速度、方向、极化、强度、波长、频率和相位极化,用来描述电场的方向。当电场的方向是垂直时,该电磁波被说成是垂直极化;当电场的方向是水平时,该电磁波被说成是水平极化。如果天线的计划方向与波的极化相同,则放置在波的传播途径上的接收天线就可以从波中取出最大的能量。当波被反射时,被反射波的极化不仅取决于入射波的极化,还取决于反射体的结构。事实上,雷达回波的极化可被用于辅助辨别目标的类型。
(1)线极化(水平极化、垂直极化)
a) 任意方向的线极化波都可以分解为两个正交分量,即垂直极化分量和水平极化分量分别用 E H T E_H^T EHT和 E V T E_V^T EVT成表示在目标处天线所辐射的水平极化和垂直极化电场,其中上标 T T T表示发射,下标 H H H 和 V ′ V^{\prime} V′分别代表水平方向和垂直方向。 E H R E_H^R EHR、 E V R E_V^R EVR 分别表示接收天线所收到的目标散射场中的水平极化成分和垂直极化成分。
[ E H R E V R ] = [ α H H α V H α H V α V V ] [ E H T E V T ] \begin{bmatrix}E_H^R\\E_V^R\end{bmatrix}=\begin{bmatrix}\alpha_{HH}&\alpha_{VH}\\\alpha_{HV}&\alpha_{VV}\end{bmatrix}\begin{bmatrix}E_H^T\\E_V^T\end{bmatrix} [EHREVR]=[αHHαHVαVHαVV][EHTEVT]
中间一项表示散射矩阵,反映目标本身的散射特性。即目标对于照射它的电场变为接收电场,目标对于极化的影响。 α H H \alpha_{HH} αHH表示水平极化入射场产生水平极化散射场的散射系数; α H V \alpha_{HV} αHV表示水平极化入射场产生垂直极化散射场的散射系数。 α V H \alpha_{VH} αVH表示垂直极化入射场产生水平极化散射场的散射系数; α V V \alpha_{VV} αVV表示垂直极化入射场产生垂直极化散射场的散射系数。
b \mathbf{b} b)特殊形体目标的散射矩阵各向同性的球体
[ α 0 0 α ] \begin{bmatrix}\alpha&0\\0&\alpha\end{bmatrix} [α00α]
入射方向对称物体
[ α H H 0 0 α V V ] \begin{bmatrix}\alpha_{HH}&0\\0&\alpha_{VV}\end{bmatrix} [αHH00αVV]
(2)圆极化(左旋、右旋)
[ E R S E L S ] = [ α R R α L R α R L α L L ] [ E R T E L T ] \begin{bmatrix}E_R^S\\E_L^S\end{bmatrix}=\begin{bmatrix}\alpha_{RR}&\alpha_{LR}\\\alpha_{RL}&\alpha_{LL}\end{bmatrix}\begin{bmatrix}E_R^T\\E_L^T\end{bmatrix} [ERSELS]=[αRRαRLαLRαLL][ERTELT]
E R T , E L T E_{R}^{T},E_{L}^{T} ERT,ELT分别表示发射场中的右旋和左旋圆极化成分, E R S E_R^{S} ERS, E L S E_L^{S} ELS分别表示散射场中右旋和左旋圆极化成分。因为目标的对称性,反射场的极化取向与入射场一致并有相同的旋转方向,但由于传播方向相反因而相对于传播方向其旋转方向亦相反,即对应于入射场的右(左)旋极 化,反射场则变为左(右)旋极化。因此,
α
R
R
=
α
L
L
=
0
α
L
R
=
α
R
L
≠
0
\begin{array}{c}\alpha_{RR}=\alpha_{LL}=0\\\alpha_{LR}=\alpha_{RL}\neq0\end{array}
αRR=αLL=0αLR=αRL=0
这一性质是很重要的,如果采用相同极化的圆极化天线作为发射和接收天线,那么对于一个近似为球体的目标,接收功率很小或为零。气象微粒(如雨等)就是球形或椭圆形,为了滤除雨回波的干扰,收发天线常采用同极化的圆极化天线。
五,系统损耗
1,系统损耗对雷达方程的影响
理想雷达方程:
R m a x = [ P t G t G r λ 2 σ ( 4 π ) 3 k T 0 B F D 0 ] 1 / 4 R_{max}=[\frac{P_tG_tG_r\lambda^2\sigma}{(4\pi)^3kT_0BFD_0}]^{1/4} Rmax=[(4π)3kT0BFD0PtGtGrλ2σ]1/4
实际工作的雷达系统总是有各种损耗的,这些损耗将降低雷达的实际作用距离,因此在雷达方程中应该引入损耗这一修正量。用 L L L表示损耗而加在雷达方程的分母中, L L L是大于 1 的值,用正分贝数来表示。损耗 L L L包括许多比较容易确定的值,诸如波导传输损耗、接收机失配损耗、天线波束形状损耗等,损耗 L中还包括一些不易估计的值,例如操纵员损耗、设备工作不完善损耗等,这些因素要根据经验和实验测定来估计。
考虑损耗后的雷达方程:
R m a x = [ P t G t G r λ 2 σ ( 4 π ) 3 k T 0 B F D 0 L ] 1 / 4 R_{max}=[\frac{P_tG_tG_r\lambda^2\sigma}{(4\pi)^3kT_0BFD_0L}]^{1/4} Rmax=[(4π)3kT0BFD0LPtGtGrλ2σ]1/4
2,损耗分类
a)射频传输损耗 当传输线采用波导时,波导损耗指的是连接在发射机输出端到天线之间波导引起的损失,它们包括单位长度波导的损耗、每一波导拐弯处的损耗、旋转关节的损耗、天线收发开关上的损耗以及连接不良造成的损耗等。
b) 天线波束形状的损耗 在理想雷达方程中,天线增益是采用最大增益,即认为最大辐射方向对准目标。但在实际工作中天线是扫描的,当天线波束扫过目标时收到的回波信号振幅按天线波束形状调制。实际收到的回波信号能量比假定按最大增益的等幅脉冲串时要小。
六,传播过程中各种因素的影响
1, 大气衰减 + ^+ +
(1) 氧气和水蒸气
大气中的氧气和水蒸气是产生雷达电波衰减的主要原因。一部分照射到这些其他微粒上的电磁波能量被它们吸收后变成热能而损失。
水蒸气的衰减谐振峰发生在 22.4 GHz(
λ
=
1.35
\lambda=1.35
λ=1.35 cm)和大约 184 GHz,而氧的衰减谐振峰则发生在 60 GHz(
λ
=
0.5
\lambda=0.5
λ=0.5 cm )和118 GHz,当工作频率低于 1GHz(
L
L
L波段) 时,大气衰减可忽略。而当工作频率高于10 GHz后,频率越高,大气衰减越严重。在毫米波段工作时,大气传播衰减十分严重,因此很少有远距离的地面雷达工作在频率高于 35GHz(Ka 波段) 的情况。
(2)晴朗天气
工作频率升高,衰减增大;而探测时仰角越大,衰减越小。
(3)其他天气
除了正常大气外,在恶劣气候条件下大气中的雨雾对电磁波也有衰减作用
2,直视距离
雷达直视距离的问题是由于地球曲率半径引起的。假设雷达天线架设高度
h
a
=
h
1
h_a=h_1
ha=h1 ,目标高度
h
t
=
h
2
h_t=h_2
ht=h2 ,由于地球表面弯曲,使雷达看不到超过直视距离以外的目标 (图中阴影区域)。
a
e
=
8490
a_e=8490
ae=8490 km 为考虑典型大气折射时等效地球半径。
雷达的直视距离:
d
0
=
4.1
∗
(
h
1
+
h
2
)
d_0=4.1*(\sqrt{h_1}+\sqrt{h_2})
d0=4.1∗(h1+h2)
d
0
d_{0}
d0单位是 Km ,
h
1
,
h
2
h_1,h_2
h1,h2单位是 m 。
雷达直视距离是由于地球表面弯曲所引起的,它由雷达天线架设高度
h
1
h_{1}
h1和目标高度
h
2
h_{2}
h2决定,而
和雷达本身的性能无关。它和雷达最大作用距离
R
m
a
x
R_{max}
Rmax是两个不同的概念
七,雷达方程的几种形式
1, 二次雷达方程 + ^{+} +
一次雷达依靠目标散射的一部分能量来发现目标。二次雷达是在目标上装有应答器,当应答器收到雷达信号以后,发射一个应答信号,雷达接收机根据所收到的应答信号对目标进行检测和识别。仁次雷达中,雷达发射信号或应答信号都只经过单程传输,而不像在一次雷达中,发射信号经双程传输后才能回到接收机。雷达发射功率
P
t
P_t
Pt ,发射天线增益
G
t
G_t
Gt ;应答器发射功率
P
t
′
P_t^{\prime}
Pt′ ,天线增益
G
t
′
G_t^{\prime}
Gt′。
(1)雷达发射信号,应答器接收敛,
R m a x = [ P t ′ G t G r ′ λ 2 ( 4 π ) 2 S i m i n ′ ] R_{max}=[\frac{P_t'G_tG_r'\lambda^2}{(4\pi)^2S_{imin}'}] Rmax=[(4π)2Simin′Pt′GtGr′λ2]
(2)应答器发射信号,雷达接收敛的
R m a x ′ = [ P t ′ G t ′ G r λ 2 ( 4 π ) 2 S i m i n ] R'_{max}=[\frac{P'_tG'_tG_r\lambda^2}{(4\pi)^2S_{imin}}] Rmax′=[(4π)2SiminPt′Gt′Grλ2]
二次雷达系统的作用距离由 R m a x R_{max} Rmax和 R m a x ′ R_{max}^{\prime} Rmax′二者中较小者决定,因此设计时一般使二者大体相等。
2,双基地雷达
双基地雷达是发射机和接收机分置在不同位置的雷达。
双基地雷达方程推导
P r = P t G t 4 π R t 2 σ A r 4 π R r 2 = P t G t G r λ 2 σ ( 4 π ) 3 R t 2 R r 2 P_r=\frac{P_tG_t}{4\pi R_t^2}\sigma\frac{A_r}{4\pi R_r^2}=\frac{P_tG_tG_r\lambda^2\sigma}{(4\pi)^3R_t^2R_r^2} Pr=4πRt2PtGtσ4πRr2Ar=(4π)3Rt2Rr2PtGtGrλ2σ
所以,双基地雷达方程为:
( R t R r ) m a x = [ P t G t G r λ 2 σ ( 4 π ) 3 S i m i n ] 1 / 2 (R_tR_r)_{max}=[\frac{P_tG_tG_r\lambda^2\sigma}{(4\pi)^3S_{imin}}]^{1/2} (RtRr)max=[(4π)3SiminPtGtGrλ2σ]1/2
约束条件:
R t + R r ≥ R b ∣ R t − R r ≤ R b ∣ \begin{array}{l}R_t+R_r\ge R_b\\|R_t-R_r\le R_b|\end{array} Rt+Rr≥Rb∣Rt−Rr≤Rb∣
3,用信号能量表示的雷达方程
常规雷达方程:
R m a x = [ P t G t 2 λ 2 σ ( 4 π ) 3 k T 0 B F D 0 ] 1 / 4 R_{max}=[\frac{P_tG_t^2\lambda^2\sigma}{(4\pi)^3kT_0BFD_0}]^{1/4} Rmax=[(4π)3kT0BFD0PtGt2λ2σ]1/4
P t P_t Pt为脉冲峰值功率,即脉冲持续时间 τ \tau τ内的平均功率; P a v P_{av} Pav为脉冲重复周期 T r T_r Tr内的平均功率。
P a v = P t τ T r P_{av}=P_t\frac{\tau}{T_r} Pav=PtTrτ
有:
B
B
B为接收机带宽,
C
B
C_B
CB为失配损失:
将上式代入雷汏方程:
R
m
a
x
=
[
P
t
τ
G
t
2
λ
2
σ
(
4
π
)
3
k
T
0
B
F
D
0
C
B
]
1
/
4
R_{max}=[\frac{P_t\tau G_t^2\lambda^2\sigma}{(4\pi)^3kT_0BFD_0C_B}]^{1/4}
Rmax=[(4π)3kT0BFD0CBPtτGt2λ2σ]1/4
E = P t τ ∣ E=P_t\tau| E=Ptτ∣,所以有:
R m a x = [ E G t 2 λ 2 σ ( 4 π ) 3 k T 0 B F D 0 C B ] 1 / 4 R_{max}=[\frac{EG_t^2\lambda^2\sigma}{(4\pi)^3kT_0BFD_0C_B}]^{1/4} Rmax=[(4π)3kT0BFD0CBEGt2λ2σ]1/4
4,干扰环境下的雷达方程
有源干扰:由有源设备(比如干扰机)发出的干扰,也就是说物体本身产生电磁波。
无源干扰:物体本身不产生电磁波,它通过反射或散射别的电磁波来达到干扰的目的。
(1)有源干扰
P
r
s
:
P_{rs}:
Prs:雷达接收到的目标回波信号功率;
P
r
j
:
P_{rj}:
Prj:雷达接收到的干扰信号功率。
这种情况下,雷达要想检测到目标,必须满足: 信号功率/(噪声功率+干扰功率)>某个门限, 而干扰功率一般远远大于噪声功率,所以,可以噪声可以忽略不计。只需要满足:
P
r
s
P
r
j
≥
A
\frac{P_{rs}}{P_{rj}}\geq A
PrjPrs≥A
A
A
A为信噪比门限。
A
r
′
A_r^{\prime}
Ar′为雷达天线对着干扰机方向的有效面积。则干扰信号到达雷达天线口面的功率为:
P
j
G
j
4
π
R
j
2
A
r
′
\frac{P_jG_j}{4\pi R_j^2}A_r^{\prime}
4πRj2PjGjAr′
干扰机首先需要经过有效侦察,侦察到雷达信号频率。发射的干扰信号中心频率才能对准雷达接收机的中心频率,干扰信号才能通过接收机带宽,进入雷达产生有效干扰。一般要求干扰信号带宽
B
j
B_{j}
Bj大于接收机带宽
B
R
B_R
BR就可以将接收机带宽铺满。此时,真正能进入接收机的只有
B
R
B_R
BR那么宽的部分干扰信号。
所以:
P r j = P j G j 4 π R j 2 A r ′ Δ f r Δ f j P_{rj}=\frac{P_jG_j}{4\pi R_j^2}A_r'\frac{\Delta f_r}{\Delta f_j} Prj=4πRj2PjGjAr′ΔfjΔfr
Δ f r : \Delta f_r: Δfr:雷达接收机带宽;
Δ f j : \Delta f_j: Δfj:干扰信号带宽。
根据天线理论, G r ′ = 4 π A r ′ / λ 2 = G r F ( θ ) G_r^{\prime}=4\pi A_r^{\prime}/\lambda^2=G_rF(\theta) Gr′=4πAr′/λ2=GrF(θ),有:
P r j = P j G j G r ′ λ 2 Δ f r ( 4 π ) 2 R j 2 Δ f j P_{rj}=\frac{P_{j}G_{j}G_{r}^{\prime}\lambda^{2}\Delta f_{r}}{\left(4\pi\right)^{2}R_{j}^{2}\Delta f_{j}} Prj=(4π)2Rj2ΔfjPjGjGr′λ2Δfr
根据雷达方程:
P r s = P t G t G r λ 2 σ ( 4 π ) 3 R 4 L P_{rs}=\frac{P_tG_tG_r\lambda^2\sigma}{(4\pi)^3R^4L} Prs=(4π)3R4LPtGtGrλ2σ
L
:
L:
L:为衰减。
根据
P
r
s
/
P
r
j
=
A
P_{rs}/P_{rj}=A
Prs/Prj=A时,可求得最大作用距离:
R m a x = [ P t G t G r σ R j 2 Δ f j 4 π P j G j G r ′ Δ f r A L ] 1 / 4 R_{max}=[\frac{P_{t}G_{t}G_{r}\sigma R_{j}^{2}\Delta f_{j}}{4\pi P_{j}G_{j}G_{r}^{\prime}\Delta f_{r}AL}]^{1/4} Rmax=[4πPjGjGr′ΔfrALPtGtGrσRj2Δfj]1/4
自卫干扰是有源干扰的一个特例。自卫干扰的意思是目标自己保护自己,也就是说干扰机就装在目
标上。此时, R j = R R_j= R Rj=R , G r ′ = G r G_r^{\prime }= G_r Gr′=Gr ,所以,自卫干扰的最大作用距离为:
R m a x = [ P t G t σ Δ f j 4 π P j G j Δ f r A L ] 1 / 2 R_{max}=[\frac{P_{t}G_{t}\sigma\Delta f_{j}}{4\pi P_{j}G_{j}\Delta f_{r}AL}]^{1/2} Rmax=[4πPjGjΔfrALPtGtσΔfj]1/2
(2)无源干扰
比如箔条干扰。
P r s : P_{rs}: Prs:雷达接收到的目标回波信号功率; P r c : P_{rc}: Prc:雷达接收到的箔条发射信号功率。根据雷达方程:
P r s = P t G t G r λ 2 σ ( 4 π ) 3 R 4 P r c = P t G t G r λ 2 σ c ( 4 π ) 3 R 4 P_{rs}=\frac{P_{t}G_{t}G_{r}\lambda^{2}\sigma}{(4\pi)^{3}R^{4}}\\P_{rc}=\frac{P_{t}G_{t}G_{r}\lambda^{2}\sigma_{c}}{(4\pi)^{3}R^{4}} Prs=(4π)3R4PtGtGrλ2σPrc=(4π)3R4PtGtGrλ2σc
只要满足 P r s / P r c ≥ A P_{rs}/P_{rc}\geq A Prs/Prc≥A ,雷达就可以探测到目标。
P r s P r c = σ σ c ≥ s 0 c 0 \frac{P_{rs}}{P_{rc}}=\frac{\sigma}{\sigma_{c}}\geq\frac{s_{0}}{c_{0}} PrcPrs=σcσ≥c0s0
雷达目标分辨单元:
Δ V = 1 2 c τ R 2 θ α θ β \Delta V=\frac{1}{2}c\tau R^2\theta_\alpha\theta_\beta ΔV=21cτR2θαθβ
V c : V_c: Vc:箔条的分布空间;
N : N: N:箔条的总数;
σ d : \sigma_d: σd:单根箔条的雷达截面积。
单位体积内箔条雷达截面积密度:
N
σ
d
V
c
\frac{N\sigma_d}{V_c}
VcNσd
所以,
Δ
V
\Delta V
ΔV体积内箔条截面积为:
σ c = N σ d V c Δ V = N σ d 1 2 c τ R 2 θ α θ β V c \sigma_{c}=\frac{N\sigma_{d}}{V_{c}}\Delta V=\frac{N\sigma_{d}\frac{1}{2}c\tau R^{2}\theta_{\alpha}\theta_{\beta}}{V_{c}} σc=VcNσdΔV=VcNσd21cτR2θαθβ
根据
σ σ c ≥ s 0 c 0 \frac{\sigma}{\sigma_c}\geq\frac{s_0}{c_0} σcσ≥c0s0
所以,雷达最大作用距离为:
R m a x = [ σ V c N σ d 1 2 c τ θ α θ β s 0 c 0 ] 1 / 2 R_{max}=[\frac{\sigma V_{c}}{N\sigma_{d}\frac{1}{2}c\tau\theta_{\alpha}\theta_{\beta}\frac{s_{0}}{c_{0}}}]^{1/2} Rmax=[Nσd21cτθαθβc0s0σVc]1/2