对损失函数的理解

损失函数在机器学习中用于衡量模型预测值与真实值之间的差距。最小二乘法通过比较标签和预测概率的差值平方来计算误差;最大似然估计则尝试使模型预测概率接近实际发生的概率;交叉熵涉及信息熵的概念,衡量预测概率分布与真实分布的差异。
摘要由CSDN通过智能技术生成

今天在看论文的时候对损失函数的含义产生了疑问

什么是损失函数?

在b站看了下科普。

损失函数可以分为三种

 1、最小二乘

2、最大似然估计

3、交叉熵

最小二乘是最好理解的:

机器模型会生成一个关于标签的概率

比方说预测一个东西是不是巧克力,他会输出一个概率

最小二乘就是将人的判断减去机器判断,然后为了保持这个数大于0,会对其平方操作而不改变他的关系。但是最小二乘在模型里实现会很麻烦,至于为什么,现在还不懂

 

最大似然估计是通过已发生的先验概率,反推一个完美的概率

用机器模型的概率逼近真实发生的概率

交叉熵

        信息量 :一个事件从概率到真实发生的难度

        熵: 一个系统从原来的不确定到确定的难度

单位可以是比特

吉布斯不等式 

 

图片来自b站 up 王木头学科学

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值