PyTorch 中广播机制(Broadcasting)笔记

在 PyTorch 中存在广播(Broadcasting),广播是一种机制,用于自动扩展较小的张量以匹配较大张量的形状,从而使得它们能够进行元素级操作(如加法、减法、乘法等)。广播并不改变张量的实际数据,而是通过虚拟扩展来简化操作。

广播机制的规则

  1. 如果两个张量的维度数量不同,则将较小的那个张量的形状前面补 1,直到两个张量的维度数量相同。

  2. 如果两个张量在某个维度上的大小不一致,但其中一个张量在该维度上的大小是 1,则可以在该维度上进行广播。

  3. 如果两个张量在任何维度上的大小既不相等也不为 1,则无法进行广播。

  4. 广播后的张量形状是每个维度上大小的最大值。

import torch

# 示例 1: 形状不同的张量相加
a = torch.tensor([[1, 2, 3], [4, 5, 6]])
b = torch.tensor([1, 2, 3])
# b 会被广播成 [[1, 2, 3], [1, 2, 3]]
result = a + b
print(result)
# 输出:
# tensor([[ 2,  4,  6],
#         [ 5,  7,  9]])

# 示例 2: 形状不同的张量相乘
a = torch.tensor([[1, 2], [3, 4], [5, 6]])
b = torch.tensor([1, 2])
# b 会被广播成 [[1, 2], [1, 2], [1, 2]]
result = a * b
print(result)
# 输出:
# tensor([[ 1,  4],
#         [ 3,  8],
#         [ 5, 12]])

# 示例 3: 形状不同的张量相加
a = torch.tensor(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值