Llama3.1技术报告简要解读--附PDF

以为前些天是在炒作llama3.1泄露,没想到Meta在24号凌晨直接开源了,包括三个不同参数规模的模型(8B、70B、405B),三个模型上下文长度都是128K,其中超大杯拥有4050亿参数,从评测指标来看必是最强开源模型了,在闭源模型中也属于第一梯队,与 GPT-4/Claude 3.5 同级。(其实405B模型对于中小企业来说最大的价值是蒸馏了,根本跑不动)

加载模型检查点所需的 GPU VRAM

加载模型检查点所需的 GPU VRAM

KVcache占用

KV cache

在这里插入图片描述
在这里插入图片描述

Hugging Face下载链接:https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f
Meta官网下载链接:https://llama.meta.com/

小扎前段时间还说可能未来不会开源模型了,当时我以为LLM开源黄昏了,没想到现在直接来波王炸,还给写了一封"关于为什么他相信开源是前进的道路"的信,这波直接respect好吧。
部分


Meta还发布了一本 92 页的 PDF技术报告,详细介绍了该模型。技术报告以及谷歌翻译后的中文版都放在文末链接了,有需要自取。

下面就对技术报告简单总结一下,还是推荐大家自己读一下,里面细节多(有挺多trick),毕竟这可是顶级企业花费巨大代价才有的经验,还免费共享出来,不学一波可说不过去了(这不白嫖)。

推上面Daniel Han大佬将该模型相较于以前Llama的变化总结为一张图:

在这里插入图片描述

在这里插入图片描述

张俊林画的模型结构图
### 关于Llama3.1-8B模型的参数、版本以及下载和使用说明 #### 模型概述 Ollama 提供了一个用于大规模语言模型(LLM)开发和应用的框架或工具集,特别针对优化和扩展这些模型的性能。通过点击 Models 选项可以选择要部署的具体模型,在此案例中选择了 llama3.1 的 8B 版本[^1]。 #### 参数详情 对于 Llama3.1-8B 模型而言,“8B”表示该模型拥有大约八十亿个参数。这使得它能够处理复杂的自然语言理解和生成任务,同时保持相对较低的资源消耗,适合多种应用场景下的本地化部署需求[^2]。 #### 安装指南 为了启动并运行这个特定的大规模语言模型实例,可以复制如下命令并在终端执行: ```bash sudo ollama run llama3.1 ``` 这条命令会触发安装过程,并最终允许用户在终端环境中直接操作已加载好的 Llama3.1-8B 模型。 #### 图形界面集成 虽然上述步骤已经能够让模型正常运作起来,但如果希望获得更加直观的操作体验,则建议进一步为其配备相应的图形用户界面组件。 #### 性能表现评估 实际测试表明,即使在网络不可用的工作环境下,Llama3.1-8B 表现依然出色,尤其适用于学习资料整理、科学普及文章撰写及多语种互译等领域内的任务迁移工作[^4]。 #### 数据集与训练改进 除了单纯增加模型容量外,开发者们还在数据源质量控制、算法效率提升等方面进行了深入探索,旨在全方位提高模型的整体效能。例如,采用了新的位置编码缩放技术来改善长序列预测精度等问题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值