一、
1、
2、pytorch基本数据类型tensor,tensor中包含data和grad,其中grad为loss对data的偏导数
二、实例
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.tensor([1.0]) # w的初值为1.0
w.requires_grad = True # 需要计算梯度
def forward(x):
return x * w # w是一个Tensor
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y) # l是一个张量,tensor主要是在建立计算图 forward, compute the loss
l.backward() # backward,compute grad for Tensor whose requires_grad set to True
print('\tgrad:', x, y, w.grad.item())
w.data = w.data - 0.01 * w.grad.data # 权重更新时,注意grad也是一个tensor
w.grad.data.zero_() # after update, remember set the grad to zero
print('progress:', epoch, l.item()) # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)
print("predict (after training)", 4, forward(4).item())
1、w是Tensor, forward函数的返回值也是Tensor,loss函数的返回值也是Tensor
2、本算法中反向传播主要体现在,l.backward()。调用该方法后w.grad由None更新为Tensor类型,且w.grad.data的值用于后续w.data的更新。
l.backward()会把计算图中所有需要梯度(grad)的地方都会求出来,然后把梯度都存在对应的待求的参数中,最终计算图被释放。
取tensor中的data是不会构建计算图的。
第一轮:损失7.3
第100轮:损失9.0e-13
3、总结
第一步:计算loss
第二部:l.backward()做反向传播
第三步:由第二步得到梯度,做梯度下降算法,更新权重
三、
二次模型y=w1x²+w2x+b
import numpy as np
import matplotlib.pyplot as plt
import torch
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w1 = torch.Tensor([1.0])#初始权值
w1.requires_grad = True#计算梯度,默认是不计算的
w2 = torch.Tensor([1.0])
w2.requires_grad = True
b = torch.Tensor([1.0])
b.requires_grad = True
def forward(x):
return w1 * x**2 + w2 * x + b
def loss(x,y):#构建计算图
y_pred = forward(x)
return (y_pred-y) **2
print('Predict (befortraining)',4,forward(4))
for epoch in range(100):
l = loss(1, 2)#为了在for循环之前定义l,以便之后的输出,无实际意义
for x,y in zip(x_data,y_data):
l = loss(x, y)
l.backward()
print('\tgrad:',x,y,w1.grad.item(),w2.grad.item(),b.grad.item())
w1.data = w1.data - 0.01*w1.grad.data #注意这里的grad是一个tensor,所以要取他的data
w2.data = w2.data - 0.01 * w2.grad.data
b.data = b.data - 0.01 * b.grad.data
w1.grad.data.zero_() #释放之前计算的梯度
w2.grad.data.zero_()
b.grad.data.zero_()
print('Epoch:',epoch,l.item())
print('Predict(after training)',4,forward(4).item())