Swin—Transformer学习笔记

本文介绍了网络框架中的关键技术,如PatchMerging(图像尺寸调整与通道扩展)、W-MSA(减少计算量但限制信息交互)、SW-MSA(引入信息交互以保持效率),以及Relativepositionbias在Attention机制中的应用。还详细讨论了模型配置参数的选择和设计。
摘要由CSDN通过智能技术生成

一、网络框架

二、Patch Merging

图像长和宽减半,通道数增加一倍

三、W-MSA

目的:减少计算量

缺点:窗口之间无法进行信息交互

四、SW-MSA

目的:实现不同window之间的信息交互

为了不增加计算量,移动window并增加Mask-MSA

计算完后将数据移动到原来位置

五、Relative position bias

bias才是Attention中B的数值,我们训练的是bias table中的参数

六、模型详细配置参数

Swin Transformer是一种基于移动窗口的Hierarchical Vision Transformer。它的目标是实现Vision Transformer在非自然场景下的迁移学习。Swing Transformer的设计灵感主要来自于CNN,它融合了CNN的一些思想并将其应用于Transformer模型中。通过引入移动窗口的概念,Swin Transformer能够实现多尺度的特征提取,这使得它可以作为一个通用的backbone,为检测、分割等计算机视觉下游任务提供更好的支持。Swing Transformer在非自然场景下的迁移学习表现较好,这是因为Transformer本身不需要过多的inductive bias,并且已有的一些工作已经证明了将NLP预训练模型直接应用于计算机视觉任务的有效性。因此,我认为Swin Transformer具有较好的迁移学习能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Swin-Transformer学习整理](https://blog.csdn.net/weixin_43856821/article/details/123243178)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Swin Transformer 学习笔记](https://blog.csdn.net/qq_36936443/article/details/124296075)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值