本地使用GFPGAN进行图像人脸修复

首先来看一下效果图
在这里插入图片描述
在这里插入图片描述

1.下载项目和权重文件

https://github.com/iptop/GFPGAN-for-Video.git

2.部署环境

根据README文件部署好环境,额外还需要:

cd GFPGAN-1.3.8
python setup.py develop

3.下载权重文件

可提前下载好权重文件(也可以等运行代码的时候,自动下载)权重文件的url:
https://ghproxy.com/https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth
https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
下载好的权重文件放在路径./GFPGAN-for-Video/gfpgan/weights

安利一个github文件下载加速网站:https://ghproxy.com/

4.运行代码

原代码是用来修复视频,但是我用了后没发现有啥效果,所以暂时只是用来修复图片
./GFPGAN-for-Video/src路径下创建脚本image_enhance.py

import argparse
import cv2
from utils.restorer import Restorer

def videoEnhance (image_path , output_image_path):
    restorer = Restorer()

    image = cv2.imread(image_path)
    frame = restorer.enhance(image)
    cv2.imwrite(output_image_path, frame)
    return True

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-i',
        '--input',
        type=str,
        required=True,
        metavar='请输入要处理的图片文件路径',
        help='请输入要处理的图片文件路径')

    parser.add_argument(
        '-o',
        '--output',
        type=str,
        required=True,
        metavar='请输入输出图片的路径',
        help='请输入输出图片的路径')

    args = parser.parse_args()
    videoEnhance(args.input, args.output)

if __name__ == '__main__':
    main()

运行脚本就可得到修复后的图片了

python src/image_enhance.py -i input.png -o output.png

5.网页端体验

Hugging Face网页端:https://huggingface.co/spaces/Xintao/GFPGAN
我试了下速度很慢
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值