【量化相关】TensorRT安装

文章详细记录了TensorRT的安装过程,包括下载、安装文件到CUDA相应目录以及使用pip安装whl文件。之后通过yolov5模型转换为pt和engine模型,对比了两者的运行速度,engine模型在检测141张图片时表现出更快的速度。
摘要由CSDN通过智能技术生成

简单记录一下tensorrt的安装步骤

1、下载连接  https://developer.nvidia.com/nvidia-tensorrt-8x-download

找到自己使用环境所需要的版本进行下载

 

2、安装

  • 复制TensorRT-8.4.0.6\bin中内容到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin
  • 复制TensorR-8.4.0.6\include中的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\include文件夹中
  • 复制TensorRT-8.4.0.6\lib文件夹中的lib文件C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin夹中。
  • 复制TensorRT-8.4.0.6\lib文件夹中的dll文件C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\lib夹中。
  • 使用pip install xxx.whl安装TensorRT-8.4.0.6文件夹中的

 安装完成后再使用yolov5生成pt模型,然后使用trt加速后生成engine模型,对141张图检测,运行速度对比如下。

 pt速度:

engine速度:

 

 参考引用:http://www.ppmy.cn/news/10962.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值