复向量的内积与共轭

一个信号离散序列为\boldsymbol{s}=[s_{1},...,s_{n}]^{T},函数为\boldsymbol{h}=[h_{1},...,h_{n}]^{T}之间的内积为:

公式1:

\langle \boldsymbol{s}, \boldsymbol{h} \rangle= \boldsymbol{s}^{H}\boldsymbol{h}=\sum_{i=1}^{n}x_{i}^{*}h_{i}

其中,x^{*}表示复共轭,这种内积公式转换称之为典范内积

公式2:

\langle \boldsymbol{s}, \boldsymbol{h} \rangle= \boldsymbol{s}^{T}\boldsymbol{h}^{*}=\sum_{i=1}^{n}x_{i}h_{i}^{*}

举个例子说明:

\boldsymbol{s}=[ 2+j,3+j],\boldsymbol{h}=[1+2j,2+j]

\langle \boldsymbol{s}, \boldsymbol{h} \rangle= \boldsymbol{s}^{H}\boldsymbol{h}=[2-j,3-j][1+2j,2+j]^{T}=11+4j

\langle \boldsymbol{s}, \boldsymbol{h} \rangle= \boldsymbol{s}^{T}\boldsymbol{h}^{*}=[2+j,3+j][1-2j,2-j]^{T}=11-4j

所以,上述展开的典范内积计算结果是共轭的。

公式1和公式2的定义携带了相同的矢量内积信息,在矢量内积的意义上2个定义公式是等价的,

\left | \sum_{i=1}^{n}x_{i}^{*}h_{i} \right |=\left | \sum_{i=1}^{n}x_{i}h_{i}^{*} \right |

\arg\left ( \sum_{i=1}^{n}x_{i}^{*}h_{i} \right )=-\arg\left ( \sum_{i=1}^{n}x_{i}h_{i}^{*} \right )

\cos\left ( \arg\left ( \sum_{i=1}^{n}x_{i}^{*}h_{i} \right ) \right )=\cos\left ( -\arg\left ( \sum_{i=1}^{n}x_{i}h_{i}^{*} \right ) \right )

\boldsymbol{s}.\boldsymbol{h} =\Re\left (\langle \boldsymbol{s}, \boldsymbol{h} \rangle \right )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值