矩阵分析与应用

线性映射

在技术科学,社会科学和数学的一些分支中,不同向量空间内向量之间的线性变换起着重要的作用。因此,为了研究两个向量空间之间的关系,有必要考虑能够实现从一个向量空间到另一个向量空间的转换关系的函数。

映射本身就是一类函数,因此常使用一般函数通用的符号来表示映射。

若令VEuclideanm空间R^{m}的子空间,WR^{n}的子空间,则

T:V \mapsto W
称为子空间V到子空间W的映射(或函数,变换),它表示将子空间V的每一个向量变成子空间W的一个相对应的向量的一种规则。

于是,若v \in Vw \in W,向量wv的映射,即有:

w=T(v)

并称子空间V是映射T的始集或域,称WT的终集或上域。

v是向量空间V的某个向量,则T(v)称为向量v在映射T下的像,或映射T在点v的值,而v称为T(v)的原像。对于向量空间V的子空间A,映射T(A)表示子空间A的元素(即向量)在映射T下的值的集合,写作:

T(A)=Im(T)=\left \{ T\left ( v:v \in V \right ) \right \}

映射T:V \mapsto W的值域Im(T)是W的一个子集合。如果 Im(T)=W,即映射的值域等于向量空间W则称  T:V \mapsto W为满射。

若将V的不同向量映射为W的不同向量,则映射T:V \mapsto W   称为单射。

若映射T:V \mapsto W既是单射又是满射,则称为一对一映射,

一个一对一映射T:V \mapsto W存在逆映射T^{-1}:W \mapsto V.

逆映射的任务是将映射T所做过的每一件事情恢复原样。因此若     T(v)=w     则      T^{-1}(w)=v。即T^{-1}(T(v))=v ,\forall v \in V 。

矩阵变换:矩阵与向量的乘法A_{m\times n}x_{n \times1}也可视为将C^{n}的向量x变换为C^{m}的某向量y=Ax的映射T:x \mapsto Ax,故矩阵与向量的乘法常称为该向量的矩阵变换。

令V和W分别是R^{m}R^{n}的子空间,并且T:V \mapsto W是映射,若对于v \in Vw \in W和所有标量c,映射T满足线性关系式

T(v+w)=T(v)+T(w)

以及
T(cv)=cT(v)

则称T为线性映射或线性变换。

定义中的两个条件也可以合并写作:

T(c_{1}v+c_{2}w)=c_{1}T(v)+c_{2}T(w)

u_{1},u_{2},.. .,u_{p}均为线性变换T的域,可得到:

T(c_{1}u_{1}+c_{2}u_{2}+.. .+c_{p}u_{p})=c_{1}T(u_{1})+c_{2}T(u_{2})+.. .c_{p}T(u_{p})

                   


 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值