一种用于从航空和卫星图像中自动提取建筑物的大规模鲁棒卷积神经网络(论文)

本文的主要贡献:
1.提出了一种尺度稳健的CNN结构,将Atrous convolution和multi-scale aggregation相结合,用于从高分辨率遥感图像中提取建筑物
2.一种将相对辐射定标和辐射定标相结合的组合数据扩充策略,用于将学习从航空数据集转移到卫星数据集,并评估CNN在多源建筑物提取上的泛化能力。

本文网络结构:
1:首先使用跳跃链接,我们将VGG-16编码器中提取的多层特征与解码中相应尺度的特征连接起来
2:在1/4和1/8的范围内引入两个空洞卷积来提取更大视场的特征。每个空洞卷积层由4个3×3 Atrous卷积组成,其空洞率分别为r = 1、6、12和18,还有一个卷积为1×1。
3:将不同尺度的特征向上采样到原始尺度,并进行拼接,最后进行预测。除了这个聚合的输出,在这里插入图片描述分离四个尺度(四个红色箭头)的预测结果可以帮助训练更准确的模型并获得更好的结果

在航空数据集结果(0.3m分辨率)
在这里插入图片描述
在这里插入图片描述
由于感受野有限,缺乏多尺度聚合,其他的方法有时会遗漏整栋建筑的一个或大或小的部分,尽管建筑的像素呈现出相同的颜色和纹理,并且看起来很容易被完全分割。

卫星数据集(2.7m分辨率)

在这里插入图片描述
在这里插入图片描述
在图6的第一行中,看起来更清晰,性能也更好。第二行的预测显示了一个建筑和背景之间的低对比度的挑战案例。文中的方法表现稍好一些,但所有的方法都不能清楚地提取建筑物。在第三行,算法需要预测一个长建筑在低对比度。U-Net的缺点直观地体现在(图6©的第三行):在译码步骤中,仅通过单通道的层-层信息传递在原尺度上进行预测,导致信息丢失。文中的方法和C-Unet通过多尺度聚合克服了这个问题,而DeepLabv3 +通过从低空间、高语义层直接向上采样解决了这个问题。图6的最后一排显示了该地区一座罕见的大型建筑,它的屋顶也有着不同寻常的颜色。所有的方法都不能提取出整个建筑,但是DeepLabv3+再次表现得最好,因为它的机制是一个简单的解码器,只依赖于最低的分辨率特性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值