基于加权对立和贪婪搜索多模态工程问题的黑猩猩优化算法(Matlab代码实现)

该博客介绍了基于加权对立和贪婪搜索改进的黑猩猩优化算法(GSOBL-ChOA),用于解决多模态工程问题。通过对23个标准函数、10个CEC06-2019基准函数和12个实际约束优化问题的评估,展示了GSOBL-ChOA的高效性能。与CMA-ES、OBL-GWO等基准算法比较,GSOBL-ChOA在多个问题上表现出色。文章提供了Matlab代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现

💥1 概述

改进的黑猩猩优化算法(ChOA),该算法使用贪婪搜索(GS)和基于对立的学习(OBL)分别提高了ChOA在解决实际工程约束问题方面的探索和开发能力。为了研究GSOBL-ChOA的效率,通过23个标准基准函数、CEC06-2019的10个基准函数、随机生成的景观和12个实际的约束优化问题(COPs-2020)对GSOBL-ChOA的性能进行了评估,这些问题涉及广泛的工程领域࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值