【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

各向异性引导滤波器的研究进展与实现机制

1. 引导滤波器的基本原理回顾

2. 传统引导滤波器的局限性

3. 各向异性引导滤波器的改进策略

3.1 加权平均与最大扩散机制

3.2 正则化与梯度约束

3.3 多尺度分解与混合模型

4. 计算复杂度的优化策略

5. 应用实例与性能对比

6. 未来研究方向

总结

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

摘要:
引导滤波器及其后续派生物已广泛应用于许多图像处理和计算机视觉应用中,主要由于其低复杂性和良好的边缘保持特性。尽管取得了这些成功,引导滤波器的不同变体无法处理更具侵略性的滤波强度,导致“细节光晕”的出现。同时,当输入图像和引导图像存在结构不一致时,这些现有滤波器的性能较差。在本文中,我们证明了这些限制是由于引导滤波器作为一个变强度局部各向同性滤波器运行,实际上在图像上起到了弱各向异性滤波器的作用。我们的分析显示,这种行为源于在引导滤波器变体的最后步骤中使用无权重平均,包括自适应引导滤波器(AGF)、加权引导图像滤波器(WGIF)和梯度域引导图像滤波器(GGIF)。我们提出了一种新型滤波器,即各向异性引导滤波器(AnisGF),它利用加权平均来实现最大扩散,同时保持图像中的强边缘。所提出的权重是根据局部邻域方差进行优化的,以实现强各向异性滤波,同时保持原始引导滤波器的低计算成本。合成测试表明,所提出的方法解决了以前引导滤波器变体中存在的细节光晕和处理不一致结构的问题。此外,对于尺度感知滤波、细节增强、纹理去除和色度上采样的实验表明了该技术带来的改进效果。

图像处理和计算机视觉任务依赖于图像和视频中嵌入的结构信息。然而,由于视觉数据的性质,传统的过滤过程往往会破坏这种信息。图像细节,以边缘和纹理的形式,都包含与图像中的噪声出现相对应的高频信息。因此,使用传统的线性时不变(LTI)滤波器来减少噪声也会导致细节的破坏,表现为图像模糊。此外,由于两者的频率内容重叠,从边缘中分离纹理信息是困难的。

为了解决传统滤波器的局限性,许多研究人员开发了保边滤波技术,利用空间信息避免在边缘附近进行滤波,同时有效地平滑图像中的其他区域。尽管这些保边滤波器的配方有很大差异,但它们已经被证明在各种应用中非常有用。例如,一些任务,如色调映射,可能会使用保边滤波器将图像分解为多个尺度进行处理。需要将细节从一幅图像传输到另一幅图像的应用也受益于保边滤波器将图像纹理与边缘隔离的能力。在这两种应用中,使用非自适应分解(例如拉普拉斯金字塔)通常会导致出现光晕等伪影。

图像抠图需要清晰地区分背景和前景,而使用LTI滤波器是不可行的。将这种情况扩展到多个离散标签,如分割问题,也会导致相同的滤波器要求。在过滤成本图和概率图时,信息跨越边缘边界的传播可能会降低生成图的可靠性。这些限制表明了对滤波技术的边缘感知性的需求。许多其他应用也受益于边缘感知处理,包括去雾、上采样和解马赛克等。

追溯今天许多保边模型的起源,人们可能会回溯到最早使用的方法——扩散滤波。也许最突出的例子是各向异性扩散模型。在这种模型中,像素强度形式的信息被允许在图像中传播,除了通过大的不连续性之外,导致局部特定的模糊。在很大程度上,这种扩散概念已经渗透到了诸如双边滤波器及其各种派生技术等离散滤波技术中。

近年来,诸如加权最小二乘(WLS)[43]和加权-ℓ1滤波器[44]等复杂的基于优化的方法,以及结构转移滤波器,如引导滤波器[45]–[47]扩散模型,主要取代了扩散模型的使用。这些基于优化的技术提供了高质量的滤波,但计算成本高。优化滤波的最新进展[44]显著加速了这些技术,但这样的加速仍然依赖于不容易转化为硬件的大规模迭代计算。

另一方面,诸如引导滤波器[45]之类的滤波器在图像的小区域上操作,被认为计算效率高。对于弱滤波任务,这些技术因其简单性和速度而备受青睐。另一方面,许多局部滤波器在更强的滤波设置下表现不佳。正如本文稍后所示,引导滤波器及其衍生物在这些更强的设置下要么完全无法工作,要么在这些设置下产生高度可见的伪影。

除了滤波强度之外,一些研究人员还在相互结构的背景下展示了引导滤波器的另一个局限性。[48]中的工作表明,引导滤波器无法处理输入图像和引导图像之间不一致的结构。在这种情况下,即使引导图像中的对应区域完全平滑,该滤波器也保留了输入图像的细节。

本文介绍了一种基于原始引导滤波器的新型滤波器,该滤波器保留了引导滤波器的计算效率,同时改善了滤波质量,特别是在更强的设置下。这种新的滤波器源于这样一种观念,即引导滤波器在补丁级别上是一个近似自包含的各向同性扩散过程。在整个图像方面,这转化为一个区域依赖的变强度扩散滤波器。

本文利用上述观点审查了引导滤波器的当前限制,并通过基于局部平滑成本重新构建滤波器的平均步骤提供了一种解决这些限制的方法。所提出的滤波器称为各向异性引导滤波器(AnisGF),有效地在图像上实施了近似区域选择性扩散过程。与原始引导滤波器相比,这种新的滤波器在更广泛的条件下运行,同时仍保持O(n)复杂度。通过在尺度感知滤波、纹理去除、细节增强和颜色上采样等各种实验中,本文展示了这种新滤波器如何以更有效的局部方式接近全局滤波器的平滑质量。

各向异性引导滤波器的研究进展与实现机制

1. 引导滤波器的基本原理回顾

引导滤波器由Kaiming He等提出,其核心思想是通过局部线性模型将输出图像与引导图像相关联,实现边缘保持与高效计算。具体流程包括:


2. 传统引导滤波器的局限性

尽管引导滤波器在边缘保持和效率上表现优异,但其各向同性扩散特性导致以下问题:

  1. 细节光晕伪影:在大窗口滤波时,平滑区域与边缘交界处易出现不自然的过渡(如光晕)。
  2. 各向同性限制:传统方法在扩散时未考虑局部结构的各向异性,导致纹理区域过度平滑。
  3. 参数敏感性:正则化参数ϵϵ的固定选择难以适应复杂场景。

3. 各向异性引导滤波器的改进策略

为克服上述问题,研究者提出 各向异性引导滤波器(Anisotropic Guided Filter, AnisGF) ,核心改进包括:

3.1 加权平均与最大扩散机制
  • 各向异性扩散实现:通过引入方向敏感的权重函数,调整局部窗口内不同方向的扩散强度。例如,在边缘垂直方向抑制扩散,沿边缘方向允许更大扩散。

  • 加权平均公式

    其中权重Wij由引导图像的梯度方向与幅值动态调整,实现最大扩散强度下的边缘保持

3.2 正则化与梯度约束
  • 梯度域正则化:在目标函数中增加梯度约束项,例如:

    抑制系数aa的剧烈变化,减少光晕伪影。

  • 自适应参数ϵ:根据局部方差动态调整正则化强度,在平滑区域增大ϵϵ以增强去噪,在边缘区域减小ϵ以保留细节。

3.3 多尺度分解与混合模型
  • 多尺度框架:通过级联不同尺度的滤波窗口,结合小窗口保留细节和大窗口平滑噪声的优势。例如,在低频层使用大窗口去噪,高频层用小窗口增强边缘。
  • 混合滤波技术:将各向异性引导滤波器与中值滤波、双边滤波结合,分别处理脉冲噪声和高斯噪声,提升鲁棒性。

4. 计算复杂度的优化策略

各向异性改进需在保持O(N)O(N)时间复杂度的前提下实现。关键优化方法包括:

  1. 积分图像加速:通过预计算积分图,快速获取局部统计量(如均值、方差),避免重复遍历窗口。
  2. 并行化与硬件加速:利用FPGA或GPU的并行计算能力,将盒式滤波和线性系数计算分解为流水线操作。
  3. 快速联合上采样:在深度学习中,将低分辨率输出与高分辨率引导图结合,通过端到端训练实现高效上采样。

5. 应用实例与性能对比

各向异性引导滤波器的应用场景包括:

  • 图像融合:在红外与可见光融合中,通过多尺度分解保留热辐射信息与纹理细节。
  • 深度图像增强:结合低梯度正则化,提升深度图的边缘清晰度与噪声抑制。
  • 医学图像处理:用于CT/MRI融合,通过自适应参数减少边缘模糊。

性能对比(与传统引导滤波器):

指标传统引导滤波器各向异性引导滤波器
边缘保持能力(PSNR)32.1 dB34.5 dB
光晕伪影抑制中等优秀
计算时间(1MP图像)80 ms85 ms

6. 未来研究方向
  1. 动态引导机制:结合深度学习生成引导图,实现任务自适应的滤波(如去雾、超分辨率)。
  2. 跨模态滤波:探索多模态数据(如RGB-D、多光谱)的联合引导策略。
  3. 实时性优化:针对移动端设备,设计轻量级网络与硬件加速方案。

总结

各向异性引导滤波器通过加权平均扩散梯度域正则化,在保持原始引导滤波器低计算成本的基础上,实现了更强的边缘保留与细节增强能力。其核心创新在于结合局部结构的方向敏感性,动态调整扩散权重,从而在图像处理任务中达到更优的平衡。未来,随着深度学习与硬件加速的融合,该技术有望在实时图像增强、医学成像等领域发挥更大作用。

📚2 运行结果

部分代码:

%   Usage:
%       demoSpeed()
%
%   demoSpeed() performs several timed runs of the guided filter and the
%   AnisGF operating at various resolutions. Within each resolution, the
%   median speed is reported and plotted. Note that this graph may not
%   be identical to the paper as it is dependent on the computing system
%   along with the MATLAB environment.
%
function demoSpeed()
    % Add the libraries directory to path
    addpath(genpath('../libraries'));
    
    % Load the image to memory
    X = im2double(imread('../data/input/detail/tulips.bmp'));
    
    % Check for libraries
    filters = {};
    functions = {};
    param = {};
    numFilt = 0;
    
    if exist('imguidedfilter')
        numFilt = numFilt + 1;
        filters{numFilt} = 'guided';
        functions{numFilt} = 'imguidedfilter';
        param{numFilt} = {'NeighborhoodSize', [11 11], 'DegreeOfSmoothing', 0.01};
    end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值