基于二阶盲源分离方法执行模态识别研究(Matlab代码实现)

该文运用两步JAD算法,结合白化和旋转处理,对振动响应数据进行二阶盲识别(SOBI),以估计复杂的模态和响应。通过MATLAB代码展示了信号处理过程,包括数据预处理、模态参数估计及模态响应的可视化。
摘要由CSDN通过智能技术生成

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文使用测量数据的分析信号,采用两步JAD算法(白化和旋转)。实质上是对振动响应数据的解析信号应用二阶盲识别(SOBI),以估计复杂的模态和模态响应。

📚2 运行结果

 

 

 部分代码:

[ld1,cd1]=size(dsine_m);
t=[1:ld1]'./fs;
%
% Call blind modal id algorithm
%
[AaI,Aa,sac,n,svl] = bmidga(dsine_m,fs,2.7,[0,0],20,[30,1]);
%
sa=real(sac); % could also use imaginary part
%
% Modal params by sdof frequency domain method
%
[lsa,csa]=size(sa);
np=7;nfft=2*lsa;
[frqd,frqn,zetap,h,f,sa,i1] = mrsp2mpfd(sa,fs,np,nfft);
Aa=Aa(:,i1);
[Aar]=real_ms2(Aa); % real-valued modeshapes from complex
%
% Plot modal responses
%
ipl=[5,8,10,11,12,13,16,17];
if 1
 figure(1);subplot(2,1,1);
 plot(t,dsine_m);
 xlabel('Time [Sec]');
 ylabel('Amplitude');
 title('Measured Data');
 %
 figure(2);subplot(2,1,1);
 plot(ff,abs(dsine_mf));
 xlabel('Frequency [Hz]');
 ylabel('Amplitude');
 title('Measured Data');
 set(gca,'xlim',[100,370]);
 %
 figure(1);subplot(2,1,2);
 plot(t,sa(:,ipl));
 xlabel('Time [Sec]');
 ylabel('Amplitude');
 title('Modal Response Estimates');
 %
 figure(2);subplot(2,1,2);
 plot(f,abs(h(:,ipl)));
 xlabel('Frequency [Hz]');
 ylabel('Amplitude');
 title('Modal Response Estimates');
 set(gca,'xlim',[100,370]);
end
%
% Save
%
Aa1=Aa(:,ipl);Aar1=Aar(:,ipl);frqd1=frqd(ipl);zetap1=zetap(ipl);sa1=sa(:,ipl);
if exist('modes.mat','file') ~= 2
 save modes.mat Aa1 Aar1 frqd1 zetap1 sa1
else
 save modes.mat Aa1 Aar1 frqd1 zetap1 sa1 -append
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李岩,施雪晴,刘文.基于车桥接触点响应和盲源分离的桥梁模态识别[J/OL].湖南大学学报(自然科学版):1-10[2023-02-28].http://kns.cnki.net/kcms/detail/43.1061.n.20220830.1352.003.html.

[2]刘婷婷,任兴民,郭峰,杨永锋.卷积混合机械非平稳振动信号的二阶盲分离方法[J].机械强度,2009,31(06):900-904.DOI:10.16579/j.issn.1001.9669.2009.06.020.

[3]S.I. McNeill, D.C. Zimmerman, A framework for blind modal identification using joint
approximate diagonalization. Mechanical Systems and Signal Processing 22(7), 1526-1548, 2008.

[4]S. McNeill, Modal identification using blind source separation techniques, PhD Dissertation,
The Department Mechanical Engineering, University of Houston, Houston, Texas, 2007.

🌈4 Matlab代码实现

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值