三维有限差分时域法在平面微带电路分析中的应用(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客   

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

将直接三维有限差分时域(FDTD)方法应用于各种微带结构的全波分析。该方法被证明是模拟复杂微带电路元件和微带天线的有效工具。根据时域结果计算了线馈矩形贴片天线的输入阻抗以及低通滤波器和支线耦合器的频率相关散射参数。这些电路是捏造的,对它们的测量结果与FDTD结果进行了比较,并显示出良好的一致性。

原文摘要:

Abstract:

A direct three-dimensional finite-difference time-domain (FDTD) method is applied to the full-wave analysis of various microstrip structures. The method is shown to be an efficient tool for modeling complicated microstrip circuit components and microstrip antennas. From the time-domain results the input impedance of a line-fed rectangular patch antenna and the frequency-dependent scattering parameters of a low-pass filter and a branch-line coupler are calculated. These circuits were fabricated and the measurements made on them are compared with the FDTD results and shown to be in good agreement.

📚2 运行结果

 部分代码:

%% Current code includes some improvements in comparison with the original 
%% calculations:
% 1) imposing UPML instead of Mur ABCs;
% 2) using real metal (copper) as a patch conductor material instead of PEC;
% 3) applying matched load at the ends of filter's transmission microstrip
%    lines to prevent physical reflections;
% 4) no "magnetic wall" or "electric wall" conditions at the Ez source
%    plane;
% 5) using real properties for dielectric with losses (Duroid).
%
function FDTD_3D_Branch_Line_Coupler
close all; clear; clc;
%% Physical constants
   epsilon0 = 8.85418782e-12; mu0 = 1.25663706e-6;
   c = 1.0/sqrt(mu0*epsilon0);

%% Gaussian half-width
   t_half = 15.0e-12;

%% Microstrip transmission lines parameters
   lineW = 2.413e-3; 
   lineH = 1.0e-3;
   % Roger's 5880 Duroid parameters
   lineEr = 2.2;     % eps_r 
   lineTan = 0.0009; % loss tangent 
   Z0 = 49.2526; % Matched load transmission line

%% End time
   t_end = 1.5e-9;

%% Total mesh dimensions and grid cells sizes (without PML)
   nx = 60; ny = 100; nz = 16;
   dx = 0.406e-3; dy = 0.406e-3; dz = 0.265e-3;

%% Number of PML layers
   PML = 5;

%% Matrix of material's constants
   number_of_materials = 4;
   % For material of number x = 1,2,3... :
   % Material(x,1) - relative permittivity, Material(x,2) - relative permeability,
   % Material(x,3) - specific conductivity
   % Vacuum
   Material(1,1) = 1.0;   Material(1,2) = 1.0;   Material(1,3) = 0.0;
   % Metal (Copper)
   Material(2,1) = 1.0;   Material(2,2) = 1.0;   Material(2,3) = 5.88e+7;
   % Substrate material (RT/Duroid 5880)
   Material(3,1) = lineEr;   Material(3,2) = 1.0;
   % Calculate conductivity of Duroid at 20 GHz from loss tangent and eps_r
   Material(3,3) = 2*pi*20e9*lineTan*lineEr*epsilon0;
   % Matched load material is calculated from transmission line parameters
   Material(4,1) = 1.0;   Material(4,2) = 1.0;   Material(4,3) = lineH/(Z0*lineW*dy);

% Add PML layers
   nx = nx + 2*PML; ny = ny + 2*PML; nz = nz + 2*PML;
% Calculate dt    
   dt = (1.0/c/sqrt( 1.0/(dx^2) + 1.0/(dy^2) + 1.0/(dz^2)))*0.9999;
   number_of_iterations = ceil(t_end/dt);

%% 3D array for geometry
   Index = ones(nx, ny, nz);

%% Define of low-pass filter geometry
   % Ground plane 
   Index((1+PML):(nx-PML-1), (1+PML):(ny-PML-1), PML+1) = 2;
   % Rectangular patch (thickness is equal to one cell)
   Index((nx/2-14):(nx/2+15), (ny/2-14):(ny/2-9), PML+5) = 2;
   Index((nx/2-14):(nx/2+15), (ny/2+9):(ny/2+14), PML+5) = 2;
   Index((nx/2-14):(nx/2-9), (1+PML):(ny-PML-1), PML+5) = 2;
   Index((nx/2+10):(nx/2+15), (1+PML):(ny-PML-1), PML+5) = 2;
   Index((nx/2-16):(nx/2-7), (ny/2-12):(ny/2+12), PML+5) = 2;
   Index((nx/2+8):(nx/2+17), (ny/2-12):(ny/2+12), PML+5) = 2;     
   % Dielectric substrate between ground plane and filter patch
   Index((1+PML):(nx-PML-1), (1+PML):(ny-PML-1), (PML+2):(PML+4)) = 3;
   % Matched load before port 1 and 2
   Index((nx/2-14):(nx/2-9), PML+1, (PML+2):(PML+4)) = 4;
   Index((nx/2+10):(nx/2+15), PML+1, (PML+2):(PML+4)) = 4;
   % Matched load after port 2
   Index((nx/2-14):(nx/2-9), ny-PML-1, (PML+2):(PML+4)) = 4;
   Index((nx/2+10):(nx/2+15), ny-PML-1, (PML+2):(PML+4)) = 4;
          
%% 3D FDTD physical (fields) and additional arrays are defined as 'single' 
%% to increase performance
   Ex = zeros(nx, ny+1, nz+1, 'single'); 
   Gx = zeros(nx, ny+1, nz+1, 'single'); 
   Fx = zeros(nx, ny+1, nz+1, 'single');  
   Ey = zeros(nx+1, ny, nz+1, 'single'); 
   Gy = zeros(nx+1, ny, nz+1, 'single'); 
   Fy = zeros(nx+1, ny, nz+1, 'single');
   Ez = zeros(nx+1, ny+1, nz, 'single'); 
   Gz = zeros(nx+1, ny+1, nz, 'single'); 
   Fz = zeros(nx+1, ny+1, nz, 'single');
   Hx = zeros(nx+1, ny, nz, 'single'); 
   Bx = zeros(nx+1, ny, nz, 'single'); 
   Hy = zeros(nx, ny+1, nz, 'single');
   By = zeros(nx, ny+1, nz, 'single'); 
   Hz = zeros(nx, ny, nz+1, 'single'); 
   Bz = zeros(nx, ny, nz+1, 'single');

%% FDTD PML coefficients arrays. Here they are already filled with values 
%% corresponding to free space 
   m = 4; ka_max = 1.0; R_err = 1.0e-16;
   eta = sqrt(mu0/epsilon0*Material(1,1)/Material(1,2));
   k_Ex_c = ones(nx, ny, nz, 'single')*2.0*epsilon0;  
   k_Ex_d = ones(nx, ny, nz, 'single')*(-2.0*epsilon0);
   k_Ey_a = ones(nx+1, ny, nz, 'single');
   k_Ey_b = ones(nx+1, ny, nz, 'single')/(2.0*epsilon0);
   k_Gz_a = ones(nx+1, ny, nz, 'single');
   k_Gz_b = ones(nx+1, ny, nz, 'single');
   k_Hy_a = ones(nx, ny, nz, 'single'); 
   k_Hy_b = ones(nx, ny, nz, 'single')/(2.0*epsilon0);
   k_Hx_c = ones(nx+1, ny, nz, 'single')*2.0*epsilon0/mu0;
   k_Hx_d = ones(nx+1, ny, nz, 'single')*(-2.0*epsilon0/mu0);
   k_Bz_a = ones(nx, ny, nz, 'single');
   k_Bz_b = ones(nx, ny, nz, 'single')*dt;
   k_Gx_a = ones(nx, ny+1, nz, 'single');
   k_Gx_b = ones(nx, ny+1, nz, 'single');
   k_Ey_c = ones(nx, ny, nz, 'single')*2.0*epsilon0; 
   k_Ey_d = ones(nx, ny, nz, 'single')*(-2.0*epsilon0);
   k_Ez_a = ones(nx, ny+1, nz, 'single'); 
   k_Ez_b = ones(nx, ny+1, nz, 'single')/(2.0*epsilon0);
   k_Bx_a = ones(nx, ny, nz, 'single'); 
   k_Bx_b = ones(nx, ny, nz, 'single')*dt;
   k_Hy_c = ones(nx, ny+1, nz, 'single')*2.0*epsilon0/mu0;
   k_Hy_d = ones(nx, ny+1, nz, 'single')*(-2.0*epsilon0/mu0);
   k_Hz_a = ones(nx, ny, nz, 'single');
   k_Hz_b = ones(nx, ny, nz, 'single')/(2.0*epsilon0);
   k_Ex_a = ones(nx, ny, nz+1, 'single');
   k_Ex_b = ones(nx, ny, nz+1, 'single')/(2.0*epsilon0);
   k_Gy_a = ones(nx, ny, nz+1, 'single'); 
   k_Gy_b = ones(nx, ny, nz+1, 'single');
   k_Ez_c = ones(nx, ny, nz, 'single')*2.0*epsilon0;
   k_Ez_d = ones(nx, ny, nz, 'single')*(-2.0*epsilon0);
   k_Hx_a = ones(nx, ny, nz, 'single');
   k_Hx_b = ones(nx, ny, nz, 'single')/(2.0*epsilon0);
   k_By_a = ones(nx, ny, nz, 'single');  
   k_By_b = ones(nx, ny, nz, 'single')*dt;
   k_Hz_c = ones(nx, ny, nz+1, 'single')*2.0*epsilon0/mu0;   
   k_Hz_d = ones(nx, ny, nz+1, 'single')*(-2.0*epsilon0/mu0);

%% General FDTD coefficients 
   I = 1:number_of_materials;
   K_a(I) = (2.0*epsilon0*Material(I,1) - Material(I,3)*dt)./...
            (2.0*epsilon0*Material(I,1) + Material(I,3)*dt);
   K_b(I) = 2.0*dt./(2.0*epsilon0*Material(I,1) + Material(I,3)*dt);
   K_c(I) = Material(I,2);
   Ka = single(K_a(Index)); Kb = single(K_b(Index)); Kc = single(K_c(Index));
   
%% PML coefficients along x-axis
   sigma_max = -(m + 1.0)*log(R_err)/(2.0*eta*PML*dx);
   for I=0:(PML-1)
        sigma_x = sigma_max*((PML - I)/PML)^m;
        ka_x = 1.0 + (ka_max - 1.0)*((PML - I)/PML)^m;
        k_Ey_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...
                          (2.0*epsilon0*ka_x + sigma_x*dt);
        k_Ey_a(nx-I,:,:) = k_Ey_a(I+1,:,:);
        k_Ey_b(I+1,:,:) = 1.0/(2.0*epsilon0*ka_x + sigma_x*dt);
        k_Ey_b(nx-I,:,:) = k_Ey_b(I+1,:,:);
        k_Gz_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...
                          (2.0*epsilon0*ka_x + sigma_x*dt);
        k_Gz_a(nx-I,:,:) = k_Gz_a(I+1,:,:);
        k_Gz_b(I+1,:,:) = 2.0*epsilon0/(2.0*epsilon0*ka_x + sigma_x*dt);
        k_Gz_b(nx-I,:,:) = k_Gz_b(I+1,:,:);
        k_Hx_c(I+1,:,:) = (2.0*epsilon0*ka_x + sigma_x*dt)/mu0;
        k_Hx_c(nx-I,:,:) = k_Hx_c(I+1,:,:);
        k_Hx_d(I+1,:,:) = -(2.0*epsilon0*ka_x - sigma_x*dt)/mu0;
        k_Hx_d(nx-I,:,:) = k_Hx_d(I+1,:,:);

        sigma_x = sigma_max*((PML - I - 0.5)/PML)^m;
        ka_x = 1.0 + (ka_max - 1.0)*((PML - I - 0.5)/PML)^m;
        k_Ex_c(I+1,:,:) = 2.0*epsilon0*ka_x + sigma_x*dt;
        k_Ex_c(nx-I-1,:,:) = k_Ex_c(I+1,:,:);
        k_Ex_d(I+1,:,:) = -(2.0*epsilon0*ka_x - sigma_x*dt);
        k_Ex_d(nx-I-1,:,:) = k_Ex_d(I+1,:,:);
        k_Hy_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...
                          (2.0*epsilon0*ka_x + sigma_x*dt);
        k_Hy_a(nx-I-1,:,:) = k_Hy_a(I+1,:,:);
        k_Hy_b(I+1,:,:) = 1.0/(2.0*epsilon0*ka_x + sigma_x*dt);
        k_Hy_b(nx-I-1,:,:) = k_Hy_b(I+1,:,:);
        k_Bz_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...
                          (2.0*epsilon0*ka_x + sigma_x*dt);
        k_Bz_a(nx-I-1,:,:) = k_Bz_a(I+1,:,:);
        k_Bz_b(I+1,:,:) = 2.0*epsilon0*dt/(2.0*epsilon0*ka_x + sigma_x*dt);
        k_Bz_b(nx-I-1,:,:) = k_Bz_b(I+1,:,:);
   end

%% PML coefficients along y-axis
   sigma_max = -(m + 1.0)*log(R_err)/(2.0*eta*PML*dy);
   for J=0:(PML-1)
        sigma_y = sigma_max*((PML - J)/PML)^m;
        ka_y = 1.0 + (ka_max - 1.0)*((PML - J)/PML)^m;
        k_Gx_a(:,J+1,:) = (2.0*epsilon0*ka_y - sigma_y*dt)/...
                          (2.0*epsilon0*ka_y + sigma_y*dt);
        k_Gx_a(:,ny-J,:) = k_Gx_a(:,J+1,:);
        k_Gx_b(:,J+1,:) = 2.0*epsilon0/(2.0*epsilon0*ka_y + sigma_y*dt);
        k_Gx_b(:,ny-J,:) = k_Gx_b(:,J+1,:);
        k_Ez_a(:,J+1,:) = (2.0*epsilon0*ka_y - sigma_y*dt)/...
                          (2.0*epsilon0*ka_y + sigma_y*dt);
        k_Ez_a(:,ny-J,:) = k_Ez_a(:,J+1,:);
        k_Ez_b(:,J+1,:) = 1.0/(2.0*epsilon0*ka_y + sigma_y*dt);
        k_Ez_b(:,ny-J,:) = k_Ez_b(:,J+1,:);
        k_Hy_c(:,J+1,:) = (2.0*epsilon0*ka_y + sigma_y*dt)/mu0;
        k_Hy_c(:,ny-J,:) = k_Hy_c(:,J+1,:);
        k_Hy_d(:,J+1,:) = -(2.0*epsilon0*ka_y - sigma_y*dt)/mu0;
        k_Hy_d(:,ny-J,:) = k_Hy_d(:,J+1,:);

        sigma_y = sigma_max*((PML - J - 0.5)/PML)^m;
        ka_y = 1.0 + (ka_max - 1.0)*((PML - J - 0.5)/PML)^m;
        k_Ey_c(:,J+1,:) = 2.0*epsilon0*ka_y+sigma_y*dt;
        k_Ey_c(:,ny-J-1,:) = k_Ey_c(:,J+1,:);
        k_Ey_d(:,J+1,:) = -(2.0*epsilon0*ka_y-sigma_y*dt);
        k_Ey_d(:,ny-J-1,:) = k_Ey_d(:,J+1,:);
        k_Bx_a(:,J+1,:) = (2.0*epsilon0*ka_y-sigma_y*dt)/...
                          (2.0*epsilon0*ka_y+sigma_y*dt);
        k_Bx_a(:,ny-J-1,:) = k_Bx_a(:,J+1,:);
        k_Bx_b(:,J+1,:) = 2.0*epsilon0*dt/(2.0*epsilon0*ka_y+sigma_y*dt);
        k_Bx_b(:,ny-J-1,:) = k_Bx_b(:,J+1,:);
        k_Hz_a(:,J+1,:) = (2.0*epsilon0*ka_y-sigma_y*dt)/...
                          (2.0*epsilon0*ka_y+sigma_y*dt);
        k_Hz_a(:,ny-J-1,:) = k_Hz_a(:,J+1,:);
        k_Hz_b(:,J+1,:) = 1.0/(2.0*epsilon0*ka_y+sigma_y*dt);
        k_Hz_b(:,ny-J-1,:) = k_Hz_b(:,J+1,:);
   end

%% PML coefficients along z-axis 
   sigma_max = -(m + 1.0)*log(R_err)/(2.0*eta*PML*dz);
 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]D. M. Sheen, S. M. Ali, M. D. Abouzahra and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," in IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 7, pp. 849-857, July 1990, doi: 10.1109/22.55775.

🌈4 Matlab代码实现

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值