💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于卡尔曼滤波的锂电池状态估计是一项重要的研究项目,旨在准确估计锂电池的荷电状态(SOC)。通过建立锂电池模型、进行参数辨识和验证,并采用扩展卡尔曼滤波(EKF)方法进行SOC估计,该项目取得了显著的进展。
在项目中,我们采用了两种不同的方式来实现SOC估计,一种是使用Simulinks工具结合EKF算法,另一种是通过编写脚本来实现EKF和UKF算法。这样的设计使得我们能够比较不同算法在SOC估计上的性能表现,为后续的研究和应用提供了有力的参考。
在实验过程中,我们的模型输入包括来自HPPC(混合脉冲功率特性)测试的电池数据中的电流和电压。通过对这些数据进行处理和分析,我们能够得到锂电池在不同工况下的状态信息,并进行SOC估计。
初步的实验结果显示,估计曲线在电流脉冲区域存在发散现象,这可能是由于电流脉冲对锂电池的影响较大,导致估计结果不够准确。然而,在恒流放电区域,估计值逐渐收敛到真实值,显示出较好的估计性能。
此外,我们观察到SOC和Up(RC元件在Thevenin ECM中的电压)的估计值呈现出同步变化的趋势。这是由于SOC和Up处于相同的状态向量中,通过卡尔曼滤波的更新过程,它们的估计值能够相互影响和调整,从而提高了估计的准确性。
总的来说,基于卡尔曼滤波的锂电池状态估计在实验中表现出了良好的性能。通过不断改进和优化算法,我们相信这一方法能够在锂电池管理系统中得到广泛应用,提高电池的使用寿命和性能稳定性。
📚2 运行结果
2.1 等效电路模型和扩展卡尔曼滤波器
文件EKFSim_R2016中使用了Thevenin等效电路模型和扩展卡尔曼滤波器,结构如下。
在SOC估计中,估计曲线在电流脉冲区域出现发散现象,但在恒流放电区域逐渐收敛到真实值。这种发散和收敛的现象可以通过EKF功能块中的SOC和Up估计值的同步变化来解释,因为它们处于相同的状态向量中。
卡尔曼滤波根据负载电压(UL)的观测值与预测值之间的差异,对包括SOC和Up在内的状态组进行更新。下面是相应的Matlab代码:
```matlab
X_upd = X_pre + K*(UL_obs-UL_pre);
```
2.2 仿真输出
2.3 改进之后
在改进之后,模块之间的I/O关系变得更加清晰,相应的Simulink文件命名为:Improved_EKFSim。
这里使用BBDST(北京公交车动态街道测试)工况作为输入电流。
2.4 仿真结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]项宇,马晓军,刘春光,等.基于改进的粒子群优化扩展卡尔曼滤波算法的锂电池模型参数辨识与荷电状态估计[J].兵工学报, 2014, 35(10):8.DOI:CNKI:SUN:BIGO.0.2014-10-021.
[2]项宇,马晓军,刘春光,等.基于改进的粒子群优化扩展卡尔曼滤波算法的锂电池模型参数辨识与荷电状态估计[J].兵工学报, 2014, 35(10):8.DOI:CNKI:SUN:BIGO.0.2014-10-021.
[3]项宇马晓军刘春光可荣硕赵梓旭.基于改进的粒子群优化扩展卡尔曼滤波算法的锂电池模型参数辨识与荷电状态估计[J].兵工学报, 2014, 035(010):1659-1666.
[4]安治国,孙志昆,张栋省,等.基于等效模型扩展卡尔曼滤波锂电池SOC估算[J].重庆交通大学学报:自然科学版, 2019, 38(2):6.DOI:10.3969/j.issn.1674-0696.2019.02.19.
[5]凌六一、何业梁、宫兵、邢丽坤.基于自适应扩展卡尔曼滤波的锂电池SOC估计[J].安徽理工大学学报:自然科学版, 2020, 40(4):7.