👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
隐写术是一种信息隐藏技术,广泛应用于数字通信的隐蔽信息传输。结合语音处理技术,可以在IP语音(VoIP)通信中实现隐写,以增强数据安全性和隐私保护。以下是如何利用语音处理技术进行隐写以及其在IP语音隐写中的应用的详细步骤:
1. 语音信号预处理
预处理是隐写的基础步骤,确保语音信号的质量和稳定性。
- **去噪**:使用滤波器等技术去除背景噪音。
- **归一化**:调整信号的幅度范围。
- **语音端点检测**:识别语音信号的起点和终点,去除静默部分。
### 2. 特征提取
从预处理后的语音信号中提取适合隐写的特征。
- **时域特征**:如短时能量、零交叉率。
- **频域特征**:如梅尔频率倒谱系数(MFCC)、线性预测系数(LPC)。
3. 隐写方案设计
选择合适的隐写方案将信息嵌入到语音信号中。
- **低比特率编码隐写**:在语音编码过程中嵌入秘密信息,例如在G.711、G.729等编码标准中使用冗余位进行信息隐藏。
- **变换域隐写**:在变换域(如离散余弦变换DCT、离散小波变换DWT)中嵌入信息,这种方法通常对信号的改变较小,更难被察觉。
### 4. 信息嵌入
具体的嵌入过程依赖于选定的隐写方案。
#### 低比特率编码隐写示例:
```python
def embed_message(signal, message, sample_rate):
# 将消息转换为二进制位
message_bits = ''.join(format(ord(char), '08b') for char in message)
bit_index = 0
signal_mod = signal.copy()
# 在信号中嵌入消息位
for i in range(len(signal)):
if bit_index < len(message_bits):
signal_mod[i] = (signal[i] & ~1) | int(message_bits[bit_index])
bit_index += 1
return signal_mod
```
5. 信息提取
从隐写的语音信号中提取隐藏的信息。
#### 信息提取示例:
```python
def extract_message(signal_mod, message_length):
message_bits = ''
for i in range(message_length * 8):
message_bits += str(signal_mod[i] & 1)
message = ''.join(chr(int(message_bits[i:i+8], 2)) for i in range(0, len(message_bits), 8))
return message
```
6. IP语音传输
在VoIP传输过程中,通过RTP(实时传输协议)将嵌入隐写信息的语音数据包发送。
- **RTP数据包构建**:构建包含隐写语音数据的RTP数据包。
- **传输**:通过VoIP网络进行传输。
### 7. 安全性和鲁棒性评估
评估隐写方案的安全性和鲁棒性,确保信息的隐蔽性和在网络传输中的稳定性。
- **安全性**:隐写信息难以被检测和提取。
- **鲁棒性**:隐写信息在经过噪声、压缩等处理后仍能被提取。
隐写是一种信息隐藏的技术,通过在载体中隐藏秘密信息,使得其他人无法察觉到隐藏在其中的信息。在语音处理中,隐写可以通过修改音频文件的一些参数或者添加一些额外的声音信号来隐藏秘密信息。
一种增强的隐写技术可以利用语音信号的一些特性来隐藏信息,比如频率、振幅、相位等。通过对这些参数进行微小的改变,就可以在语音信号中隐藏信息,而且这种改变对人耳几乎是不可察觉的。
在IP语音通信中,隐写可以用来隐藏敏感信息,比如密码、认证信息等。通过在语音信号中隐藏这些信息,可以在通信过程中有效保护敏感信息的安全性。同时,由于隐写技术对语音信号的影响很小,所以不会影响通信的质量和实时性。
总的来说,增强的隐写技术在IP语音隐写中具有很大的应用前景,可以帮助用户在通信过程中保护敏感信息的安全,并且不会对通信质量造成影响。
📚2 运行结果
部分代码:
clc ; clear;
x=2:1:10;
a=1./x;
N=20.*x;
b1=power(2,x)-1 %2^x-1%
b2=power(2,(x-1))-1; %2^(x-1)-1%
b3=power(2,x);
r1=0.00;ra=0;ea=0;ea1=0;
r2=0;
r3=[];
r4=[];
d=0.1
c=x./b1
for j=1:9
for t=1:b2(j)
r1=r1+(a(j)*N(j)*(b3(j)-t)/b3(j)) %hm+wpc%
end
r4=[r4 r1];
end
ra=(r4+(N.*x))./(N.*b1);
for i=1:9
for t=1:b2(i)
r2=r2+(c(i)*N(i)*(b3(i)-t)/b3(i));
end
r3=[r3 r2];
end
ra1=(r3+(N.*x))./(N.*b1); %latest ER%
k1=power(2,x)-1;
k2=ceil(k1/2);
k3=power(2,ceil(x/2))+power(2,floor(x/2))-2;
r1=x./k1; r2=x./k2;r3=x./k3;
r4=(r1+r2+r3)./3
plot(x,ra,'-+'); hold on %hm+WPC
plot(x,r2,'k-^','MarkerFace','g');hold on %SWPC average
plot(x,ra1,'-*','MarkerFace','r');hold on %Im
%plot(x,r3,'k-^','MarkerFace','g');
axis([2 10 0.0 0.8])
%plot(bcr1,r5,'-.k','MarkerFace','r')
%title('Statistical Results of Rate','fontname','Times New Roman')
%axis([0.05 0.4 0.2 1])
xlabel('Number of secret messages bits')
%ylabel('ER','fontname','Times New Roman')
ylabel('ER')
legend('F5-WPC','SWPC','F5-SWPC','location','Northeast')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]黄美伦.面向自适应多速率语音的隐写分析技术研究[D]. 2019.
[2]刘小康,田晖,刘杰,等.IP语音隐写及隐写分析研究[J].重庆邮电大学学报:自然科学版, 2019.DOI:CNKI:SUN:CASH.0.2019-03-017.
[3]田晖,郭舒婷,秦界,等.基于可量化性能分级的自适应IP语音隐写方法[J].电子学报, 2016, 44(11):7.DOI:10.3969/j.issn.0372-2112.2016.11.024.