【深度强化学习】基于深度Q网络(Deep Q-Network, DQN)DQN的Cart Pole Balance研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、DQN算法原理

三、实验设置

四、实验结果与分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

使用 DQN 解决 Cart Pole Balance 的研究

一、引言

深度Q网络(Deep Q-Network, DQN)是一种结合深度学习和强化学习的算法,由DeepMind在2013年提出。DQN通过深度神经网络来近似Q函数,从而解决传统Q-learning在高维状态空间中的难题。Cart Pole Balance问题是一个经典的强化学习测试环境,通过控制小车左右移动来保持车上的摆杆直立,是评估强化学习算法性能的常用基准之一。

二、DQN算法原理

DQN算法的核心思想是利用深度神经网络来近似Q函数,即Q(s, a) ≈ Q(s, a; θ),其中θ为神经网络的参数。DQN算法主要包括以下几个关键步骤:

  1. 定义神经网络结构:DQN使用一个或多个全连接层来构建神经网络,输入为当前状态s,输出为所有可能动作a的Q值。

  2. 经验回放(Experience Replay):DQN使用一个经验回放缓冲区来存储过去的经验(s, a, r, s'),并在训练时从中随机抽取小批量经验进行学习,以打破数据之间的相关性,提高训练稳定性。

  3. 目标网络(Target Network):DQN使用两个结构相同但参数不同的神经网络,一个为当前网络(用于选择动作和计算预测Q值),另一个为目标网络(用于计算目标Q值)。目标网络的参数定期从当前网络复制,以稳定训练过程。

  4. 损失函数:DQN的损失函数为均方误差损失,即最小化预测Q值与目标Q值之间的误差。

  5. 优化算法:DQN使用反向传播算法和梯度下降法来优化神经网络的参数。

三、实验设置

在Cart Pole Balance问题中,DQN算法的实验设置通常包括以下几个部分:

  1. 环境配置:使用Gym库中的CartPole-v1或CartPole-v0环境,该环境提供了小车的位置、速度、杆子的角度和顶端速度作为状态输入,以及左右移动作为动作输出。

  2. 神经网络结构:定义一个包含多个全连接层的神经网络,输入层神经元数量与状态维度相同,输出层神经元数量与动作空间大小相同。

  3. 超参数设置:设置学习率、经验回放缓冲区大小、批量大小、目标网络更新频率等超参数。

  4. 训练过程:在每个时间步,智能体根据当前状态选择动作,执行动作后得到下一个状态和奖励,并将经验存储到经验回放缓冲区中。然后,从经验回放缓冲区中随机抽取小批量经验进行训练,更新当前网络的参数。

  5. 评估指标:使用平均回合得分、训练稳定性等指标来评估算法的性能。

四、实验结果与分析

通过DQN算法在Cart Pole Balance问题上的实验,可以观察到以下结果:

  1. 收敛性:DQN算法能够稳定地收敛到较高的平均回合得分,表明算法能够有效地学习控制策略。

  2. 稳定性:由于经验回放和目标网络的使用,DQN算法在训练过程中表现出较高的稳定性,避免了传统Q-learning算法中的波动问题。

  3. 泛化能力:DQN算法通过深度神经网络来近似Q函数,能够处理高维状态空间中的复杂问题,并具有一定的泛化能力。

五、结论与展望

本文通过使用DQN算法解决Cart Pole Balance问题,验证了DQN算法在强化学习中的有效性和优越性。未来工作可以进一步探索DQN算法的改进方法,如结合其他深度学习技术、优化神经网络结构、调整超参数等,以提高算法的性能和泛化能力。同时,也可以将DQN算法应用于更复杂的实际场景中,解决更多具有挑战性的控制问题。

📚2 运行结果

部分代码:

Input : Qlearning( No of Epochs, No of Itteration in each Epoch, Dicount Factor,
epsilon, simulation Choice )
%}
% Training Initialization
CartPoleQlearn = DQNLearn(100,300,1,1,false);

% Training Start
CartPoleQlearn.QLearningTrain();

%% Testing the DQN Network
test_simSteps = 4000;
CartPoleQlearn.DQNTest(test_simSteps);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]周瑶瑶,李烨.基于排序优先经验回放的竞争深度Q网络学习[J].计算机应用研究, 2020(2):3.DOI:10.19734/j.issn.1001-3695.2018.06.0513.

[2]徐志雄,曹雷,张永亮,等.基于动态融合目标的深度强化学习算法研究[J].计算机工程与应用, 2019(7):5.DOI:10.3778/j.issn.1002-8331.1712-0343.

[3]徐志雄,曹雷,张永亮,等.基于动态融合目标的深度强化学习算法研究[J].计算机工程与应用, 2019(7):157-161.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值