💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
以下是关于基于LMS(Least Mean Squares,最小均方误差)、FxLMS、NLMS(Normalized LMS,归一化最小均方误差)算法进行主动降噪的研究文档概要:
一、引言
主动降噪是一项重要的音频信号处理技术,广泛应用于通信、语音识别、语音合成等领域。由于环境噪声的存在,语音信号往往受到干扰,导致语音质量下降。因此,采用降噪算法对语音信号进行处理以提高语音质量显得尤为重要。LMS、FxLMS和NLMS算法是自适应滤波理论中的重要算法,具有较低的计算复杂度和快速的收敛速度,适用于实时语音降噪的应用场景。
二、LMS算法原理及应用
LMS算法是一种基于梯度下降法的自适应滤波器,通过不断调整滤波器的权值,使输出信号尽可能接近期望信号。算法的核心思想是通过最小化误差信号的均方差来更新权值,从而逐步逼近最佳滤波器。
在语音降噪中,输入信号包括语音信号和噪声信号,目标是将噪声信号滤除,保留语音信号。具体步骤如下:
- 对输入信号进行分帧处理,将长时间的信号划分为小的时间段,每段称为帧。
- 初始化滤波器的权值,可以随机选择一组初始权值。
- 对每一帧信号,将输入信号输入到滤波器中得到输出信号,计算输出信号与期望信号之间的误差。
- 通过最小化误差信号的均方差,更新滤波器的权值,使输出信号逐步逼近期望信号。
- 重复上述过程,直到滤波器的权值收敛或达到最大迭代次数。
LMS算法的优点在于计算复杂度低、收敛速度快,但缺点是对输入信号的统计特性要求较高,且对于信噪比较低的情况效果较差。
三、FxLMS算法原理及应用
FxLMS算法是LMS算法的一种改进形式,特别适用于主动降噪系统。它通过在LMS算法的基础上引入反馈路径,实现了对噪声信号的主动抑制。
FxLMS算法的关键步骤包括:
- 对误差传感器接收到的期望信号进行离散傅里叶变换,获得其频域信号。
- 根据指定降噪值计算出对应的频域加权值。
- 对期望信号的频域信号进行加权处理,将加权后的频域信号进行逆离散傅里叶变换,得到加权后的期望信号。
- 将加权后的期望信号代入LMS算法,算法收敛后得到控制滤波器系数。
- 利用该控制滤波器系数,得到指定降噪量的降噪效果。
FxLMS算法能够较准确地将不同频段的噪声降至该频段的指定降噪值,增强了主动降噪的灵活性。
四、NLMS算法原理及应用
NLMS算法是对LMS算法的另一种改进形式,通过归一化处理消除了对输入信号统计特性的依赖。在NLMS算法中,滤波器的权值更新公式中引入了一个归一化因子,使得算法在输入信号统计特性不满足高斯分布或平稳性假设时仍能保持较好的性能。
NLMS算法的具体步骤如下:
- 对输入信号进行预处理,如分帧、加窗等。
- 初始化滤波器的权值和归一化因子。
- 对每一帧信号,计算输入信号与滤波器权值之间的点积,得到滤波器的输出信号。
- 计算输出信号与期望信号之间的误差。
- 根据误差信号和归一化因子更新滤波器的权值。
- 重复上述过程,直到滤波器的权值收敛或达到最大迭代次数。
NLMS算法在保持LMS算法优点的同时,提高了算法对输入信号统计特性的适应性,适用于更广泛的噪声抑制和信号增强应用场景。
五、实验与结果分析
为了验证LMS、FxLMS和NLMS算法在主动降噪中的性能,可以设计一系列实验进行对比分析。实验可以采用高斯白噪声作为噪声信号,通过不同算法对语音信号进行降噪处理,并评估降噪前后的语音质量。
实验结果分析可以包括以下几个方面:
- 降噪前后的信噪比(SNR)对比,以评估算法的降噪效果。
- 算法收敛速度的比较,以评估算法的实时性能。
- 算法在不同信噪比条件下的性能表现,以评估算法的鲁棒性。
六、结论与展望
本文基于LMS、FxLMS和NLMS算法对主动降噪技术进行了研究。实验结果表明,这些算法在语音降噪中均表现出较好的性能。未来,可以进一步探索这些算法在更复杂噪声环境下的应用,以及与其他降噪算法的结合使用,以进一步提高降噪效果。
📚2 运行结果
2.1 NLMS
2.2 LMS
2.3 FuNLMS
部分代码:
for j = 1:length(mus)
for i = 1:100
%% initialize values
% generate input signal
muOG=mus(j); %learning rate
M=128; %buffer size (num filter weights)
x=randn(10000,1); %input signal
x=x/max(x); %sample rate
fs=8000; %number of samples of the input signal
N=length(x); %length of input signal
% generate known filter coefficients
Pz=0.5*[0:127]; %linear coefficients
%Pz=randn(128,1); %random coefficients
ylim = max(Pz)*1.20;
ymin = min(Pz)-.2*max(Pz);
% generate filtered input signal == desired signal
d=conv(Pz,x); %input signal filtered by known filter Pz (primary path)
%% ESTIMATE SECONDARY PATH SIGNAL USING LMS %%
%generate dummy secondary path response Sz
Sz = Pz/2;
%run known signal through filter
yp=conv(Sz,x);
%initalize Sz hat values
Szh=zeros(M,1);
for n=M:N
ypvec=x(n:-1:n-M+1); %input has to be in reverse orxer has to be
mu = muOG/(ypvec'*ypvec);
e(n)=yp(n)-Szh'*ypvec; %update error
%plot(e)
Szh=Szh+mu*ypvec*(e(n)); %update filter coefficient
end
Szh = abs(ifft(1./abs(fft(Szh))));
%% LMS FOR MAIN ANC %%
mu=2.6;
%initialize signal
y = zeros(N,1);
%filter input by learned filter to get x prime
xp = conv(Szh,x);
yp = conv(Szh,y);
%initialize delayed cancellation signal
ypvecLast = zeros(M,1);
yvecLast = zeros(M,1);
%initalize adaptive filter values
Az=zeros(M,1);
Bz=zeros(M,1);
%Make sure that x and d are column vectors
x=x(:);
d=d(:);
%LMS
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]Wang, FengsuiWang, QishengLiu, FurongChen, JingangFu, LinjunZhao, Fa.Improved NLMS-based adaptive denoising method for ECG signals[J].Technology and health care: official journal of the European Society for Engineering and Medicine, 2021, 29(2).
[2]杨海龙.音频主动降噪系统的研究[D].南京邮电大学[2024-11-05].
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取