【多目标优化算法】基于档案的多目标算法优化(MAOA)(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、MAOA算法背景与原理

二、MAOA算法特点

三、MAOA算法应用与实验

四、MAOA算法优势与挑战

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议粉丝按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

本研究提出了一种基于档案的多目标算法优化算法(MAOA),作为最近建立的多目标问题算法优化算法(AOA)的替代方案。AOA方法最初是基于重要的数学算术运算符的分布行为,如乘法、除法、减法和加法。MAOA中引入了存档的想法,它可以用于找到非支配的帕累托最优解。在七个基准函数、十个CEC-2020数学函数和八个受限工程设计挑战上测试了提出的方法,以确定其是否适合解决现实世界的工程难题。实验结果与文献中报道的五种多目标优化方法(多目标粒子群优化(MOPSO)、多目标拍打群算法(MSSA)、多目标蚁狮优化器(MOALO)、多目标遗传算法(NSGA2)和多目标灰狼优化器(MOGWO))进行了比较,这些方法使用了多种性能指标。实证结果表明,所提出的MAOA优于现有的最先进的多目标方法,并且具有较高的收敛速度。

基于档案的多目标算法优化(MAOA)是一种针对多目标优化问题的算法,它引入了档案机制来寻找非支配的Pareto最优解。以下是对MAOA研究的详细分析:

一、MAOA算法背景与原理

  1. 背景

    • 多目标优化问题(MOP)涉及多个目标函数的优化,旨在找到一组解,这些解在多个目标上均表现良好,即接近Pareto最优前沿。
    • 传统的多目标优化算法如NSGA-II、SPEA2等,虽然取得了一定的成果,但在处理复杂问题时仍存在局限性。
  2. 原理

    • MAOA算法基于算术优化算法(AOA),后者基于重要数学算术算子(如乘法、除法、减法和加法)进行优化。
    • MAOA在AOA的基础上引入了档案机制,用于存储非支配的Pareto最优解。这些解在算法迭代过程中不断更新,以逼近Pareto最优前沿。

二、MAOA算法特点

  1. 档案机制

    • 档案是一个简单的存储机制,用于记录算法迭代过程中产生的非支配解。
    • 当档案中的解决方案过多时,系统会按照一定规则(如人口密度)随机移除部分解决方案,以腾出空间给新的非支配解。
  2. 领导者选择策略

    • MAOA采用基于Pareto最优的领导者选择策略。
    • 通过档案记录的最佳非支配解决方案,并从搜索空间中方案较少区域选择领导者,以确定新的最优位置。
    • 选择过程使用轮盘赌方法,增加了来自人口稀疏区域的解决方案成为新领导者的概率。

三、MAOA算法应用与实验

  1. 应用领域

    • MAOA算法适用于各种多目标优化问题,特别是工业工程中的复杂优化问题。
  2. 实验测试

    • MAOA算法在多个基准函数、CEC-2020数学函数以及受限工程设计挑战上进行了测试。
    • 实验结果表明,MAOA算法优于现有的多种先进多目标优化方法(如MOPSO、MSSA、MOALO、NSGA2和MOGWO),具有较高的收敛速度和更好的解集质量。

四、MAOA算法优势与挑战

  1. 优势

    • 引入档案机制,有效存储和管理非支配解,提高了算法的性能。
    • 采用基于Pareto最优的领导者选择策略,有助于发现更优的解。
    • 实验结果表明,MAOA算法在多个问题上均表现出色。
  2. 挑战

    • 如何进一步提高算法的收敛速度和解集质量,以应对更复杂的多目标优化问题。
    • 如何平衡算法的探索和利用能力,以避免陷入局部最优解。

五、结论与展望

基于档案的多目标算法优化(MAOA)是一种有效的多目标优化算法,它通过引入档案机制和基于Pareto最优的领导者选择策略,提高了算法的性能和解集质量。未来研究可以进一步探索算法的改进和优化,以应对更复杂的多目标优化问题,并拓展其在更多领域的应用。

📚2 运行结果

部分代码:

%-------------------------- MAOA -----------------------------------------
    for i=1 % Numbver of independent runs

        [Archive_F]=MAOA(max_iter,ArchiveMaxSize,Pop,nvar,method,j);
        if numel(Archive_F')==2
            continue
        end
        Archive_F=Archive_F';

        if obj_no==2
            plot(Archive_F1(:,1),Archive_F1(:,2),'Color','g','LineWidth',4);
            hold on
            plot(Archive_F(:,1),Archive_F(:,2),'ro','LineWidth',1,...
                'MarkerEdgeColor','b',...
                'MarkerFaceColor','r',...
                'Marker','o',...
                'MarkerSize',10);
            legend('True PF','Obtained PF');
            title(sprintf('MAOA FOR P%d PROBLEM',j));
            xlabel('obj_1');
            ylabel('obj_2');
            hold off
        end
        if obj_no==3
            plot3(Archive_F1(:,1),Archive_F1(:,2),Archive_F1(:,3),'Color','g','LineWidth',1);
            hold on
            plot3(Archive_F(:,1),Archive_F(:,2),Archive_F(:,3),'ro','LineWidth',1,...
                'MarkerEdgeColor','b',...
                'MarkerFaceColor','r',...
                'Marker','o',...
                'MarkerSize',10);
            legend('True PF','Obtained PF');
            title(sprintf('MAOA FOR P%d PROBLEM',j));
            xlabel('obj_1');
            ylabel('obj_2');
            zlabel('obj_3');
            hold off
        end
        savefig(sprintf('P%d/fig_%d.fig',j,i));
    end
    save(sprintf('P%d/result_P%d.mat',j,j));
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1] Mao J , Hirasawa K , Jinglu H U ,et al.Genetic Symbiosis Algorithm for Multiobjective Optimization Problems[J].Transactions of the Society of Instrument and Control Engineers, 2001.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值