💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议粉丝按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
本研究提出了一种基于档案的多目标算法优化算法(MAOA),作为最近建立的多目标问题算法优化算法(AOA)的替代方案。AOA方法最初是基于重要的数学算术运算符的分布行为,如乘法、除法、减法和加法。MAOA中引入了存档的想法,它可以用于找到非支配的帕累托最优解。在七个基准函数、十个CEC-2020数学函数和八个受限工程设计挑战上测试了提出的方法,以确定其是否适合解决现实世界的工程难题。实验结果与文献中报道的五种多目标优化方法(多目标粒子群优化(MOPSO)、多目标拍打群算法(MSSA)、多目标蚁狮优化器(MOALO)、多目标遗传算法(NSGA2)和多目标灰狼优化器(MOGWO))进行了比较,这些方法使用了多种性能指标。实证结果表明,所提出的MAOA优于现有的最先进的多目标方法,并且具有较高的收敛速度。
基于档案的多目标算法优化(MAOA)是一种针对多目标优化问题的算法,它引入了档案机制来寻找非支配的Pareto最优解。以下是对MAOA研究的详细分析:
一、MAOA算法背景与原理
-
背景:
- 多目标优化问题(MOP)涉及多个目标函数的优化,旨在找到一组解,这些解在多个目标上均表现良好,即接近Pareto最优前沿。
- 传统的多目标优化算法如NSGA-II、SPEA2等,虽然取得了一定的成果,但在处理复杂问题时仍存在局限性。
-
原理:
- MAOA算法基于算术优化算法(AOA),后者基于重要数学算术算子(如乘法、除法、减法和加法)进行优化。
- MAOA在AOA的基础上引入了档案机制,用于存储非支配的Pareto最优解。这些解在算法迭代过程中不断更新,以逼近Pareto最优前沿。
二、MAOA算法特点
-
档案机制:
- 档案是一个简单的存储机制,用于记录算法迭代过程中产生的非支配解。
- 当档案中的解决方案过多时,系统会按照一定规则(如人口密度)随机移除部分解决方案,以腾出空间给新的非支配解。
-
领导者选择策略:
- MAOA采用基于Pareto最优的领导者选择策略。
- 通过档案记录的最佳非支配解决方案,并从搜索空间中方案较少区域选择领导者,以确定新的最优位置。
- 选择过程使用轮盘赌方法,增加了来自人口稀疏区域的解决方案成为新领导者的概率。
三、MAOA算法应用与实验
-
应用领域:
- MAOA算法适用于各种多目标优化问题,特别是工业工程中的复杂优化问题。
-
实验测试:
- MAOA算法在多个基准函数、CEC-2020数学函数以及受限工程设计挑战上进行了测试。
- 实验结果表明,MAOA算法优于现有的多种先进多目标优化方法(如MOPSO、MSSA、MOALO、NSGA2和MOGWO),具有较高的收敛速度和更好的解集质量。
四、MAOA算法优势与挑战
-
优势:
- 引入档案机制,有效存储和管理非支配解,提高了算法的性能。
- 采用基于Pareto最优的领导者选择策略,有助于发现更优的解。
- 实验结果表明,MAOA算法在多个问题上均表现出色。
-
挑战:
- 如何进一步提高算法的收敛速度和解集质量,以应对更复杂的多目标优化问题。
- 如何平衡算法的探索和利用能力,以避免陷入局部最优解。
五、结论与展望
基于档案的多目标算法优化(MAOA)是一种有效的多目标优化算法,它通过引入档案机制和基于Pareto最优的领导者选择策略,提高了算法的性能和解集质量。未来研究可以进一步探索算法的改进和优化,以应对更复杂的多目标优化问题,并拓展其在更多领域的应用。
📚2 运行结果
部分代码:
%-------------------------- MAOA -----------------------------------------
for i=1 % Numbver of independent runs
[Archive_F]=MAOA(max_iter,ArchiveMaxSize,Pop,nvar,method,j);
if numel(Archive_F')==2
continue
end
Archive_F=Archive_F';
if obj_no==2
plot(Archive_F1(:,1),Archive_F1(:,2),'Color','g','LineWidth',4);
hold on
plot(Archive_F(:,1),Archive_F(:,2),'ro','LineWidth',1,...
'MarkerEdgeColor','b',...
'MarkerFaceColor','r',...
'Marker','o',...
'MarkerSize',10);
legend('True PF','Obtained PF');
title(sprintf('MAOA FOR P%d PROBLEM',j));
xlabel('obj_1');
ylabel('obj_2');
hold off
end
if obj_no==3
plot3(Archive_F1(:,1),Archive_F1(:,2),Archive_F1(:,3),'Color','g','LineWidth',1);
hold on
plot3(Archive_F(:,1),Archive_F(:,2),Archive_F(:,3),'ro','LineWidth',1,...
'MarkerEdgeColor','b',...
'MarkerFaceColor','r',...
'Marker','o',...
'MarkerSize',10);
legend('True PF','Obtained PF');
title(sprintf('MAOA FOR P%d PROBLEM',j));
xlabel('obj_1');
ylabel('obj_2');
zlabel('obj_3');
hold off
end
savefig(sprintf('P%d/fig_%d.fig',j,i));
end
save(sprintf('P%d/result_P%d.mat',j,j));
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1] Mao J , Hirasawa K , Jinglu H U ,et al.Genetic Symbiosis Algorithm for Multiobjective Optimization Problems[J].Transactions of the Society of Instrument and Control Engineers, 2001.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取