【柔性机器人执行器的模型和控制算法研】从多个参数集中批量生成即用型关节执行器模型类,并包含各种非线性动力学效应研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

摘要

本研究旨在探索柔性机器人执行器的模型构建与控制算法设计,以实现从多个参数集中批量生成即用型关节执行器模型类,并深入研究其各种非线性动力学效应。通过结合先进的建模技术和控制策略,我们期望为柔性机器人的实际应用提供理论基础和技术支持。

引言

柔性机器人以其高度的灵活性和适应性在多个领域展现出巨大的应用潜力,如医疗手术、危险区域勘察和柔性制造等。然而,柔性机器人的动力学行为相比传统刚性机器人更为复杂,其控制策略的设计也面临诸多挑战。因此,本研究聚焦于柔性机器人执行器的模型构建与控制算法,旨在实现更精确、更稳定的控制。

模型构建

  1. 参数化模型生成
    • 我们提出了一种从多个参数集中批量生成即用型关节执行器模型类的方法。这些参数集包括执行器的几何尺寸、材料属性、驱动方式等。
    • 通过结合有限元分析和信息论方法,我们能够构建出包含各种非线性动力学效应的柔性执行器模型。
  2. 非线性动力学效应考虑
    • 柔性执行器的动力学行为受到多种非线性因素的影响,如结构变形、材料非线性、接触力等。
    • 在模型构建过程中,我们充分考虑了这些因素,并采用了先进的数值方法和仿真技术来模拟和预测柔性执行器的动态响应。

控制算法设计

  1. 传统控制方法
    • 我们首先研究了传统的PID控制方法在柔性执行器控制中的应用,并分析了其优缺点。
    • 通过调整PID控制器的参数,我们实现了对柔性执行器基本运动状态的控制。
  2. 非线性控制方法
    • 针对柔性执行器的非线性动力学特性,我们设计了一种基于力/力矩控制和位置/力控制的非线性控制策略。
    • 该策略能够较好地解决柔性执行器自身的应变变形等问题,并实现更精确、更稳定的控制。
  3. 模型自适应控制方法
    • 为了进一步提高控制精度和鲁棒性,我们研究了模型自适应控制方法。
    • 通过实时更新模型参数和控制器参数,我们能够更好地适应柔性执行器在工作过程中的动态变化。

非线性动力学效应研究

  1. 动态响应分析
    • 我们对柔性执行器在不同工况下的动态响应进行了详细的分析,包括其位移、速度、加速度等运动参数的变化。
    • 通过对比仿真结果和实验结果,我们验证了所建模型的准确性和可靠性。
  2. 混沌动力学分析
    • 针对柔性执行器在复杂工况下可能出现的混沌动力学行为,我们采用了信息论方法来构建其混沌动力学模型。
    • 通过分析混沌动力学模型的特性,我们获得了对柔性执行器动态行为更深入的理解。

结论与展望

本研究成功地从多个参数集中批量生成了即用型关节执行器模型类,并深入研究了其各种非线性动力学效应。通过结合先进的建模技术和控制策略,我们实现了对柔性执行器更精确、更稳定的控制。未来的研究将进一步优化模型和控制算法,提高柔性机器人的整体性能和适应能力,并探索其在更多领域的应用潜力。

📚2 运行结果

后面的运行结果去掉Matlab图框

 部分代码:


% Open the example m-file
fig_handles.open_btn = uicontrol('Style','pushbutton',...
    'units','normalized',...
    'String','Open Example',...
    'Tag','open_btn',...
    'Position',[listX+btnWidth+0.05 btnY btnWidth 0.05],...
    'Callback',{@localOpen_callback});

% Open the example m-file
fig_handles.close_btn = uicontrol('Style','pushbutton',...
    'units','normalized',...
    'String','Close Dialog',...
    'Tag','close_btn',...
    'Position',[listX+2*(btnWidth+0.05) btnY btnWidth 0.05],...
    'Callback',{@localClose_callback});

% Display the example description
descriptionString = '';
fig_handles.descriptionListbox = uicontrol('Style','listbox',...
    'units','normalized',...
    'String',descriptionString,...
    'Tag','matlabListbox',...
    'Position',[listX 0.1 0.9 0.43 ],...
    'Callback', {@localDescription_callback});

fig_handles.descriptionTitle = uicontrol('Style','text',...
    'units','normalized',...
    'String','Example Description',...
    'FontWeight', 'bold',...
    'FontSize', 12,...
    'HorizontalAlignment', 'left',...
    'Tag','description_txt',...
    'Position', [listX 0.54 listWidth 0.05]);%,...

% Extend the handles struct by some information that might be useful in
% callbacks.
fig_handles.cjtPath = cjtPath;
fig_handles.examplePath = examplePath;
fig_handles.matlabExamples = matlabExamples;
fig_handles.simulinkExamples = simulinkExamples;
fig_handles.mainFig = mainFig;

% Save the structure
guidata(mainFig,fig_handles);

end

function localDescription_callback(hObject, eventdata, handles)
% hObject    handle to listbox1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns contents
% contents{get(hObject,'Value')} returns selected item from listbox1

% Get the structure using guidata in the local function
fig_handles = guidata(gcbo);

% Find out which example has been selected.
listboxTag = get(fig_handles.activeListbox,'Tag');
index_selected = get(fig_handles.activeListbox,'Value');
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]陈强.自适应迭代学习控制算法及应用研究[D].重庆大学[2024-12-21].

[2]赵玉腾.协作机器人关节模组滑模控制算法研究[D].北京工业大学,2022.

[3]陈培华.基于中间件技术的关节型机器人动力学仿真系统研究[D].上海交通大学,2014. 

[4]邱志成.基于特征模型的柔性关节机械臂的控制[J].系统仿真学报, 2002, 14(8):4.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值