💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
通信系统:OFDM 与 FBMC 调制:QAM 与 OQAM 子载波:64 帧:5 迭代:10³ 信道:AWGN 与频率选择性信道 评估方法:误码率(BER)与互补累积分布函数(CCDF)
降低方法:削波、压缩扩展、选择性映射(SLM)、时域SLM、混合方法
一、OFDM与FBMC调制技术对比
1.1 基本原理与结构差异
- OFDM:采用QAM调制,通过IFFT/FFT实现子载波正交性,需插入循环前缀(CP)抑制多径干扰。其频谱泄漏较高(矩形窗导致旁瓣衰减仅13dB),且CP占用带宽(约10-25%效率损失)。
- FBMC:使用OQAM调制,实部与虚部分时发送(间隔半个符号周期),并采用原型滤波器组(如PHYDYAS滤波器)优化频谱特性。无需CP,通过时频重叠的滤波器设计抑制符号间干扰(ISI)和载波间干扰(ICI),旁瓣衰减可达50dB以上,频谱效率提升显著。
1.2 QAM与OQAM的对比
- QAM(OFDM):复数符号直接映射,频谱效率高(如64-QAM每符号6比特),但对相位噪声敏感,需严格同步以避免正交性破坏。
- OQAM(FBMC):实部符号与虚部符号错时发送,虚部干扰通过原型滤波器的时频正交性抵消。虽仅传输实数符号,但通过符号重叠(如4符号重叠)和高效滤波器设计,实现与QAM相当的频谱效率。
1.3 64帧结构的影响
- OFDM:64帧结构中,CP长度需大于信道最大时延扩展,否则导致ISI。帧间保护间隔不足时,多径效应会加剧BER恶化。
- FBMC:符号重叠特性(如K=4)天然支持长帧传输,无需额外保护间隔。64帧下,滤波器组的时域扩展可抑制帧间干扰,但计算复杂度较高。
二、AWGN与频率选择性信道建模
2.1 AWGN信道模型
2.2 频率选择性信道模型
三、BER与CCDF的评估方法
3.1 误码率(BER)计算
- 定义:BER = 错误比特数 / 总传输比特数。
- 理论公式(AWGN下BPSK):BER=Q(2⋅SNR)BER=Q(2⋅SNR),其中 QQ 为高斯误差函数。
- 仿真方法:在不同SNR下传输随机数据(如10^5符号),统计错误率并绘制BER曲线。
3.2 互补累积分布函数(CCDF)
- 定义:CCDF = P(PAPR>γ)P(PAPR>γ),用于评估峰均功率比(PAPR)的分布特性。
- FBMC的挑战:因符号重叠和滤波器特性,FBMC的PAPR通常高于OFDM(如14.1dB vs. 7.3dB)。
四、降低BER与CCDF的技术方案
4.1 BER优化方法
- 信道均衡:OFDM采用频域MMSE均衡,FBMC利用原型滤波器的时域正交性实现无CP均衡。
- 同步补偿:针对FBMC/OQAM对定时误差敏感的问题,设计盲估计或导频辅助的载波频偏(CFO)补偿算法。
- 编码与分集:采用LDPC码或空时编码提升抗衰落能力,尤其在频率选择性信道中效果显著。
4.2 CCDF优化方法
- OFDM:经典技术包括选择性映射(SLM)、部分传输序列(PTS)和压扩变换(如μ-law)。
- FBMC:联合线性与非线性方法(如IBPTS-ICF),通过迭代限幅滤波和凸优化降低信号失真,PAPR可降低3-5dB。
五、仿真与性能对比
以运行结果为准。
5.1 仿真参数示例
- 系统配置:FFT点数512,保护间隔212,符号长度100,SNR范围0-15dB。
- 结果对比:
- BER:FBMC在SNR>5dB时优于OFDM(AWGN下),频率选择性信道中差距缩小但仍有优势。
- CCDF:FBMC的PAPR较高,但通过优化方案可接近OFDM水平(如从14.1dB降至9dB)。
5.2 性能总结
指标 | OFDM/QAM | FBMC/OQAM |
---|---|---|
频谱效率 | 低(CP占用带宽) | 高(无CP) |
PAPR(dB) | 7.3 | 14.1(可优化至9) |
抗多径能力 | 依赖CP长度 | 滤波器组抑制ICI |
同步要求 | 严格 | 宽松 |
六、未来研究方向
- 混合波形设计:结合FBMC的高效频谱利用和OFDM的易实现性,根据信道条件动态切换。
- MIMO兼容性:优化FBMC的滤波器设计以支持大规模MIMO。
- AI辅助优化:利用深度学习算法联合优化PAPR和BER,降低计算复杂度。
通过上述分析,FBMC/OQAM在频谱效率和抗干扰能力上具有显著优势,但需进一步解决PAPR和计算复杂度问题;而OFDM/QAM凭借成熟生态仍是当前主流,两者在不同场景下各有适用性。
分享追问
📚2 运行结果
部分代码:
%double sampling
OQAM_Frame=Frame*2;
symbol_total = N*Frame;
% PPN1 and PPN2 and overlapped Frame
Tx=zeros(1,K*N+(Frame*2-1)*N/2+N/2);
OQAM=zeros(N,Frame*2); %OQAM signals
%sampling by 2*
data_QAM=zeros(N,Frame);
symbol=zeros(symbol_total);
bers = zeros(1,length(EbN0_dB));
ber_count=0;
symbol_output=zeros(symbol_total);
Power = zeros(K*N+(Frame*2-1)*N/2+N/2,N_iter);
Average=zeros(N_iter,1);
Peak=zeros(N_iter,1);
% Prototype Filter (cf M. Bellanger, Phydyas project)
H1=0.971960;
H2=sqrt(2)/2;
H3=0.235147;
% normalization factor
factech=1+2*(H1+H2+H3);
% impulse response
hef(1:K*N)=0;
for k=1:K*N-1
hef(1+k)=1-2*H1*cos(pi*k/(2*N))+2*H2*cos(pi*k/N)-2*H3*cos(pi*k*3/(2*N));
end
%normalization
hef=hef/factech;
h=hef;
figure(1);
plot(h);
title ('Phydyas Filter Impulse response');
% Calculate Aeverage Power
for m = 1:N_iter
Tx=zeros(1,K*N+(Frame*2-1)*N/2+N/2);
% Modulator
for nframe=1:Frame
symbol(1+(nframe-1)*N:nframe*N) = randi(2^Nbps,N,1) - 1; % information source
% Info Source & Mod
graycode = symbol(1+(nframe-1)*N:nframe*N);
% Gray code (according to website)
index_3 = find(symbol(1+(nframe-1)*N:nframe*N)==3);
index_2 = find(symbol(1+(nframe-1)*N:nframe*N)==2);
graycode(index_3) = 2;
graycode(index_2) = 3;
% mapped QAM data
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]吴奔,陈西宏,刘晓鹏,等.散射通信中OFDM/OQAM的ICI和ISI分析[J].火力与指挥控制, 2015, 40(9):6.
[2]吴奔,陈西宏,刘晓鹏,等.散射通信中OFDM/OQAM的ICI和ISI分析[J].火力与指挥控制, 2015, 000(009):35-39,44.
[3]王睿.基于分布直线拟合的OQAM/FBMC通信系统信道估计与导频优化研究[D].华中科技大学,2021.
[4]汪周飞,袁伟娜.基于深度学习的多载波系统信道估计与检测[J].浙江大学学报:工学版, 2020, 54(4):7.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取