【优化算法】加权黑猩猩优化算法(WChOA)(Matlab代码实现)【与ChOA、PSO、WOA、BH、ALO、GA和GWO算法比较】

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 概述

一、引言

二、算法原理

三、算法实现

四、算法性能评估

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

    ​如今,有相当数量的元启发式算法被用来解决许多变量多、复杂度高的问题。最流行的基于群体智能的元启发式方法之一是黑猩猩优化算法 (ChOA),其灵感来自黑猩猩在群体狩猎中的个体智力和性动机。该文提出了一种加权ChOA(WChOA)替代方案,以解决大规模数值优化问题中出现的两个主要问题,如低收敛速度和求解高维问题的局部最优陷阱。标准 ChOA 和WChOA 之间的主要区别在于,提供了一个位置加权方程来提高收敛速度并避免局部最优。此外,在基于群体智能的算法中,所提出的方法在探索和开发之间取得了平衡。所提出的WChOA方法在不同的条件下进行评估,以证明它是最好的。为此,应用了一组经典的30个单峰、多模态和固定维多模态基准函数来研究WChOA特性的优缺点。此外,WChOA在IEEE进化计算大会基准测试函数(CECC06,2019竞赛)上进行了测试。为了进一步阐明WChOA在大规模数值优化和实际问题中的性能,通过13个高维优化问题和10个真实世界优化问题对WChOA进行了研究。结果表明,与ChOA、PSO、BBO、WOA、BH、ALO、GA、SCA和GWO等文献中最先进的方法相比,WChOA在收敛速度、卡在局部最小值的概率、探索和利用方面表现出色。

以下是一份关于“加权黑猩猩优化算法(WChOA)”的研究文档,该文档将WChOA与ChOA、PSO、WOA、BH、ALO、GA和GWO等算法进行了比较。

一、引言

随着优化问题的复杂性和规模不断增加,传统的优化方法已难以满足需求。因此,元启发式算法因其强大的全局搜索能力和鲁棒性而受到了广泛关注。其中,黑猩猩优化算法(ChOA)作为一种新兴的元启发式算法,其灵感来源于黑猩猩在群体狩猎中的个体智力和性动机。然而,ChOA在处理大规模数值优化问题时,存在收敛速度慢和易陷入局部最优的问题。为了克服这些不足,本研究提出了一种加权黑猩猩优化算法(WChOA)。

二、算法原理

WChOA在ChOA的基础上,引入了位置加权方程来提高收敛速度并避免局部最优。位置加权方程根据其他黑猩猩从攻击者、驱赶者、阻碍者和追赶者身上的学习率以及欧几里德距离来动态调整搜索代理的位置。这种加权方法使得WChOA在每次迭代中都能根据当前搜索状态进行调整,从而实现了更好的收敛性能和全局搜索能力。

三、算法实现

WChOA的实现步骤主要包括初始化种群、计算适应度值、更新搜索代理位置以及判断终止条件等。其中,更新搜索代理位置是WChOA的核心步骤,它根据位置加权方程来动态调整搜索代理的位置。此外,为了保持种群的多样性,WChOA还采用了变异操作来引入新的搜索代理。

四、算法性能评估

为了评估WChOA的性能,本研究将其与ChOA、粒子群优化算法(PSO)、鲸鱼优化算法(WOA)、生物地理学优化算法(BH)、蚁狮优化算法(ALO)、遗传算法(GA)和灰狼优化算法(GWO)等七种先进的元启发式算法进行了比较。实验采用了经典的测试函数集,包括单峰函数、多峰函数和高维函数等,以全面评估WChOA在不同条件下的性能。

实验结果表明,WChOA在收敛速度、全局搜索能力和求解质量等方面均优于其他七种算法。特别是在处理高维优化问题时,WChOA表现出了更强的收敛性能和全局搜索能力。此外,WChOA在求解实际问题时也表现出了良好的性能,证明了其在实际应用中的潜力。

五、结论与展望

本研究提出了一种加权黑猩猩优化算法(WChOA),通过引入位置加权方程来提高收敛速度并避免局部最优。实验结果表明,WChOA在收敛速度、全局搜索能力和求解质量等方面均优于其他先进的元启发式算法。未来研究可以进一步探索WChOA在更多实际问题中的应用,以及如何通过改进算法参数和策略来进一步提高其性能。

📚2 运行结果

 

部分代码

clear all 
clc

SearchAgents_no=30; % Number of search agents
N=SearchAgents_no;
Function_name='F2'; % Name of the test function that can be from F1 to F23 (Table 3,4,5 in the paper)

Max_iteration=500; % Maximum numbef of iterations
Max_iter=Max_iteration;

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);


[ABest_scoreChimp,ABest_posChimp,Chimp_curve]=WChimp(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[PSO_gBestScore,PSO_gBest,PSO_cg_curve]=PSO(N,Max_iteration,lb,ub,dim,fobj);
[TACPSO_gBestScore,TACPSO_gBest,TACPSO_cg_curve]=TACPSO(N,Max_iteration,lb,ub,dim,fobj);
[MPSO_gBestScore,MPSO_gBest,MPSO_cg_curve]=MPSO(N,Max_iteration,lb,ub,dim,fobj);

% PSO_cg_curve=PSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); % run PSO to compare to results

figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])

%Draw objective space
subplot(1,2,2);
semilogy(MPSO_cg_curve,'Color','g')
hold on
semilogy(PSO_cg_curve,'Color','b')
hold on
semilogy(TACPSO_cg_curve,'Color','m')
hold on
semilogy(Chimp_curve,'--r')


title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('MPSO','PSO','TACPSO','Chimp')

display(['The best optimal value of the objective funciton found by TACPSO is : ', num2str(TACPSO_gBestScore)]);
display(['The best optimal value of the objective funciton found by PSO is : ', num2str(PSO_gBestScore)]);
display(['The best optimal value of the objective funciton found by PSO is : ', num2str(MPSO_gBestScore)]);
display(['The best optimal value of the objective funciton found by Chimp is : ', num2str(ABest_scoreChimp)]);

🎉3 参考文献

[1]Khishe, M., et al. “A Weighted Chimp Optimization Algorithm.” IEEE Access, Institute of Electrical and Electronics Engineers (IEEE), 2021, pp. 1–1, doi:10.1109/access.2021.3130933.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值