👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
微电网经济调度需要在建立各类分布式电源稳态输出及成本模型的基础上,决策如何安排各机组出力,以使整个微电网运行在一个经济合理的状态。文献[3]在分析微电网内分布式电源选择、控制方式和出力优化的基础上,提出了微电网能量管理系统建设构想,并指出与大电网能量管理系统的区别,为研究微电网调度指明了方向;文献[4]是国内研究微电网能量优化调度的先例,它对比分析了当微电网与主网之间在不同的能量交互策略下微电网的运行特点;文献[5]针对微电网运行的环保性和运行经济性分别建立目标函数模型,提出多目标优化求解策略,相比单一目标优化更具合理性;文献[6-7]通过以热定电方式将微型燃气轮机也纳入了调度范畴。上述文献都是以当前时段微电网各
DG运行环境下的运行成本最低为目标, 确定各分布式电源出力优先级,并没有考虑各时间段分布式电源出力的协调优化,仍属于静态调度。微电网运行方式复杂,内部分布式电源多样,约束条件繁多,计及相邻时段内联系的动态调度更加符合系统的实际运行要求。对于调度模型的求解,目前智能优化算法应用居多,主要有遗传算法、粒子群算法等[8-10] ,但是智能算法对约束条件的处理能力有限,考虑时间动态特点困难,难以实现动态调度。
基于动态规划的微电网动态经济调度研究
一、动态规划的基本原理与核心思想
动态规划(Dynamic Programming, DP)是一种基于贝尔曼最优性原理的多阶段决策优化方法,其核心在于将复杂问题分解为相互关联的子问题,通过递推求解各阶段的最优策略以实现全局最优。主要特点包括:
- 无后效性:当前阶段的状态仅由前一阶段的状态和决策决定,不影响后续阶段的决策。
- 阶段划分:将时间或空间维度划分为离散阶段,例如将微电网的调度周期(如24小时)分解为小时级时段。
- 状态转移方程:描述状态变量(如储能荷电状态SOC、发电机出力)随决策(如充放电功率、启停操作)的变化规律。
- 逆向/正向递推:传统动态规划采用逆向递推,但维数灾难问题促使近似动态规划(ADP)等改进方法出现。
二、微电网动态经济调度的核心目标与约束
目标函数:以运行周期内总成本最小化为核心,包括:
- 可控电源(柴油机、燃料电池)的燃料、启停和维护成本;
- 储能设备的充放电损耗与折旧成本;
- 与主网的购售电成本及环境惩罚成本。
关键约束条件:
- 功率平衡约束:满足负荷需求与可再生能源出力波动,如式:Pgen+Pgrid+Pstorage=PloadPgen+Pgrid+Pstorage=Pload 。
- 储能系统约束:SOC的上下限(如20%~90%)及充放电功率限制。
- 机组运行限制:发电机最小启停时间、爬坡率、出力范围。
- 主网交互约束:购售电互斥及功率上限。
三、动态规划在微电网调度中的建模与应用步骤
-
阶段划分与状态变量选择:
- 阶段:时间切片(如每小时为一个阶段);
- 状态变量:包括储能SOC、发电机状态(启停)、主网交互功率等。
- 示例:冷热电联供系统中,SOC和蓄热度(HSD)作为状态变量。
-
状态转移方程构建:
-
描述状态变量的动态演化。例如,储能SOC的转移方程为:
-
发电机状态需考虑启停成本与时间耦合效应。
-
-
指标函数与递归关系:
- 定义每个阶段的生产成本(如式20:Fcost(K,I)=min[Pcost+Scost+Fcost(K−1,L)]。
- 通过正向或逆向递推累积总成本,筛选最优路径。
-
求解策略优化:
- 维数灾难应对:采用近似动态规划(ADP)或状态空间缩减技术。
- 多时间尺度协调:结合日前调度与实时滚动优化,提升对风光不确定性的适应性。
四、动态规划在微电网调度中的优势与挑战
优势:
- 全局最优性:通过多阶段决策保证整体成本最低。
- 时间耦合处理能力:天然适用于储能充放电、机组启停等时间相关约束。
- 灵活性:可与随机规划、鲁棒优化结合处理不确定性。
挑战:
- 维数灾难:状态变量维度增加导致计算量指数级上升。
- 预测精度依赖:可再生能源出力预测误差影响状态转移准确性。
- 实时性不足:传统DP难以满足分钟级实时调度需求,需与模型预测控制(MPC)结合。
五、典型研究案例与参数设置
-
案例1(孤立微电网):
- 组件:风电、光伏、柴油机、燃料电池、锂离子储能。
- 目标:最小化燃料成本与储能折旧,最大化可再生能源利用率。
- 求解方法:遗传算法(GA)与动态规划结合,24小时仿真结果显示成本降低12%。
-
案例2(并网微电网):
- 模型:考虑分时电价与换电站负荷调度。
- 优化策略:采用CPLEX求解器,净利润较静态调度提升23%。
- 状态变量:储能SOC、换电站电池库存、主网交互功率。
六、未来研究方向
- 混合优化框架:动态规划与强化学习、深度学习的融合,提升对高维状态空间的处理能力。
- 多目标优化:在成本最小化基础上,引入碳排放、可靠性等指标。
- 边缘计算集成:利用边缘设备实现分布式动态规划,提升实时性。
七、结论
动态规划为微电网动态经济调度提供了理论严谨的求解框架,尤其在处理时间耦合约束和全局优化方面具有显著优势。尽管面临计算复杂性和实时性挑战,但通过近似算法改进、多时间尺度协同及混合优化策略,其在微电网调度中的应用前景广阔。未来研究需进一步结合新型智能算法与硬件加速技术,推动理论向工程实践的转化。
📚2 运行结果
2.1 动态规划——一维度
2.2 动态规划——二维
%目标函数 输出fc、bat值及目标函数最小值
[opt,F]=dp(soc,sohc,'dpp','trans','Obfun');
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]蒋一鎏,卫春峰.基于动态规划的微电网动态经济调度[J].电气应用,2016,35(22):67-72.
[2]朱永明.基于动态规划方法的微电网实时能量调度优化[J].机电信息,2022(07):14-16.DOI:10.19514/j.cnki.cn32-1628/tm.2022.07.004.