【无人机】【深度强化学习DQN】太阳能供电的可持续无人机通信网络的最优充电配置设计研究(Python代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

太阳能供电的可持续无人机通信网络最优充电配置设计研究

1. 引言

2. 太阳能无人机能源系统关键技术

2.1 系统组成与原理

2.2 核心组件技术进展

2.3 设计挑战

3. 可持续通信网络设计原则与评估指标

3.1 设计原则

3.2 评估指标

4. 充电配置优化关键挑战与解决方案

4.1 挑战分析

4.2 优化策略

5. DQN算法在路径规划与充电配置中的应用

5.1 算法原理

5.2 应用案例

5.3 性能对比

6. 综合优化框架与未来方向

6.1 系统架构

6.2 未来研究方向

7. 结论

📚2 运行结果

🎉3 参考文献 

🌈4 Python代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

太阳能供电的可持续无人机通信网络最优充电配置设计研究

1. 引言

太阳能无人机凭借其超长航时、高空作业能力,成为构建可持续通信网络的理想载体。其核心目标是通过最大化太阳能收集效率、优化储能与分配策略,实现全天候自主运行。结合深度强化学习(如DQN)的路径规划与充电调度,可进一步提升能源利用率与网络稳定性,推动绿色通信技术发展。


2. 太阳能无人机能源系统关键技术
2.1 系统组成与原理

太阳能无人机由太阳能电池板、储能系统(锂电池/超级电容器)、功率变换器及负载(通信设备)构成。白天通过光伏发电驱动飞行并为储能系统充电,夜间依赖储能维持运行。例如,NASA的“Helios”无人机翼展达75.3米,飞行高度近30公里,展示了高空长航时潜力。

2.2 核心组件技术进展
  • 太阳能电池:单晶硅电池效率最高(实验室超40%),但成本高;柔性GaAs薄膜电池兼顾效率与轻量化,适用于无人机曲面布局。中国“彩虹”无人机采用超薄单晶硅异质结(SHJ)电池,实现高效能源转化。
  • 储能系统:锂电池能量密度高,但循环寿命有限;超级电容器功率密度高,适合瞬态负载补偿。混合系统(光伏+锂电池+超级电容)可平衡能量与功率需求。
  • 功率变换器:双向DC-DC变换器实现能量双向流动,非隔离型Buck/Boost拓扑效率超90%,适用于小型无人机。
2.3 设计挑战
  • 能量平衡:需满足昼夜能源供需平衡,避免储能过放或冗余。
  • 轻量化:材料选择(如碳纤维)与结构优化需降低整机质量,提升有效载荷占比。

3. 可持续通信网络设计原则与评估指标
3.1 设计原则
  • 能源效率优先:动态调整网络负载,如6G网络通过停用低负载基站天线降低能耗。
  • 循环经济:设备再制造与回收,延长生命周期。
  • 智能化管理:实时监测能耗指标(如KPI),通过AI算法优化充放电策略。
3.2 评估指标
  • 能源流动效率:衡量太阳能转化为有效功的比例,需结合飞行轨迹与负载需求优化。
  • 网络可持续性指数:包括单位数据能耗、碳排放强度、设备回收率等。

4. 充电配置优化关键挑战与解决方案
4.1 挑战分析
  • 动态环境适应性:高温/低温影响电池性能,需设计宽温域充放电协议。
  • 多机调度冲突:充电站资源有限时,需避免多无人机充电请求冲突。
  • 效率与安全平衡:无线充电需解决错位容忍(如随机降落偏差)与电磁干扰问题。
4.2 优化策略
  • 混合能源管理:光伏+锂电池+超级电容混合系统,白天优先使用太阳能,夜间按负载需求切换储能模式。
  • 智能调度算法:基于博弈论或强化学习实现多无人机充电排队优化,减少总充电时间(TCT)。实验表明,充电站数量与电池容量需匹配,短程无人机需更多充电节点。
  • 无线充电技术:磁共振耦合提升错位容忍度,发射线圈直径优化可提高效率至85%以上。

5. DQN算法在路径规划与充电配置中的应用
5.1 算法原理

DQN结合Q-learning与深度神经网络,通过经验回放与目标网络解决高维状态空间下的决策问题。其损失函数为:

其中,θ为网络参数,γ为折扣因子。

5.2 应用案例
  • 路径规划:在复杂地形中,改进DQN(如引入人工势场奖励)使路径长度缩短1.9%,拐点减少62.5%。分层DQN分离激励与动作层,收敛速度提升40%。
  • 充电调度:将充电站访问融入状态空间,通过奖励函数引导无人机在低电量时优先飞向充电节点,减少任务中断。
5.3 性能对比
算法路径优化率避障成功率适用场景
传统DQN-85%静态障碍
APF-DDQN+1.9%93%动态环境
混合整数规划+0%78%多机协同

6. 综合优化框架与未来方向
6.1 系统架构

构建“能源-通信-控制”闭环:

  1. 感知层:通过LiDAR与GPS实时获取环境与自身状态。

  2. 决策层:DQN生成路径与充电策略,考虑能源约束与通信QoS。
  3. 执行层:功率变换器按策略分配能源,无线充电模块执行对接。
6.2 未来研究方向
  • 材料创新:开发钙钛矿太阳能电池,理论效率超30%且成本低。
  • 算法融合:DQN与仿生算法(如麻雀搜索)结合,提升三维空间搜索效率。
  • 标准化评估:建立统一的可持续性指标,覆盖全生命周期碳排放。

7. 结论

太阳能无人机通信网络的充电配置优化需融合能源管理、智能算法与硬件创新。通过DQN驱动的动态路径规划与多目标调度,可显著提升能源利用率与网络可靠性。未来需突破材料限制、完善评估体系,推动该技术在应急通信、生态监测等领域的规模化应用。

📚2 运行结果

部分代码:

import numpy as np
import pandas as pd
import numpy as np
import time
import sys
import tkinter as tk
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

UNIT = 5  # pixels   像素
MAZE_H = 100  # grid height
MAZE_W = 100  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r','o']  # 行为
        self.n_actions = 25  # 行为数
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                                height=MAZE_H * UNIT,
                                width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_W * UNIT
            self.canvas.create_line(x0, y0, x1, y1)  # 画一条从(x0,y0)到(x1,y1)的线

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]沈冰,许士勋,卢小凤,等.无人机中基于C-DQN的资源分配和轨迹优化研究[J].测试技术学报, 2022(002):036.

[2]曹英杰.基于深度强化学习的应急无人机基站部署策略研究[D].电子科技大学,2024.

🌈Python代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值