欠驱动机器人系统在SE(3)中的集成制导与反馈控制研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

欠驱动机器人系统在SE(3)中的集成制导与反馈控制研究

一、欠驱动机器人系统的定义与特性

二、SE(3)空间的数学基础与机器人学意义

三、欠驱动系统的集成制导方法

四、SE(3)框架下的反馈控制策略

五、协同设计典型案例

六、挑战与未来方向

七、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

欠驱动机器人系统在SE(3)中的集成制导与反馈控制研究

摘要

本文开发了一种集成制导与反馈控制方案,用于引导欠驱动车辆在三维空间中通过期望的航路点。欠驱动车辆被建模为具有四个控制输入的刚体。这些控制输入驱动车辆在机体固连坐标系中的三个旋转自由度和一个平移自由度。这种驱动模型适用于包括具有内部姿态执行器的航天器、垂直起降(VTOL)飞机、固定翼多旋翼无人机(UAVs)、机动机器人车辆等多种欠驱动车辆。

制导问题在刚体运动的特殊欧几里得群SE(3)上开发,基于几何力学框架,该框架在全球配置流形上表示车辆动力学。集成制导与控制算法选择通过给定航路点的期望平移轨迹,以及基于期望推力方向以实现平移轨迹的期望姿态轨迹。然后获得反馈控制律,以引导欠驱动车辆沿着期望的平移和旋转轨迹运动。该集成制导与反馈控制方案考虑了已知的控制输入限制,并生成了连续且至少二阶可导的轨迹,可使用连续且有界的控制输入实现。

该集成制导与反馈控制方案被应用于欠驱动的四旋翼无人机,以自主地在SE(3)中通过一系列给定的航路点生成轨迹,并在有限时间内跟踪期望轨迹。对反馈系统的整体稳定性进行了分析。通过离散拉格朗日-d'Alembert原理,以李群变分积分器的形式获得了无人机动力学和控制方案的离散时间模型。通过分析和数值仿真,证明了反馈系统在其状态空间上几乎全局渐近稳定。

一、欠驱动机器人系统的定义与特性

欠驱动机器人系统指控制输入数目少于系统自由度(DoF)的非线性机械系统。其核心特征包括:

  1. 动力学复杂性:由于未驱动自由度的存在,系统呈现强非线性、时变性和状态耦合性。例如,Acrobot体操机器人因执行器数量少于自由度,其动力学模型需处理非完整约束和漂移项。
  2. 控制挑战:欠驱动特性导致无法直接应用全驱动系统的反馈线性化方法。如双足机器人需通过动态耦合实现姿态控制,且需验证零动态稳定性。
  3. 应用优势:在能量效率、机械轻量化及成本控制方面具有显著优势,适用于航天器、仿生机器人等领域。
二、SE(3)空间的数学基础与机器人学意义

SE(3)(特殊欧几里得群)是描述三维刚体运动的核心数学工具,其定义为:

其中,R为旋转矩阵,p为平移向量。其特性包括:

  1. 李群结构:SE(3)的切空间对应李代数se(3)se(3),元素ξ∈se(3)ξ∈se(3)可分解为平移速度vv和角速度ωω。
  2. 几何约束:SE(3)的流形特性导致运动规划需考虑非交换性(旋转与平移不可交换)和曲率效应。
  3. 应用场景:在无人机姿态控制、机械臂末端轨迹规划中,SE(3)提供全局坐标系下的刚体运动描述。
三、欠驱动系统的集成制导方法
  1. 运动学层制导设计
    • 视线制导(Line-of-Sight, LOS):在欠驱动无人艇(USV)中,通过航速-航向联合律生成期望路径,并基于李雅普诺夫函数证明稳定性。
    • 虚拟约束法:起重机控制中引入虚拟完整约束,将欠驱动问题转化为降维系统的镇定问题。
  2. 动力学层轨迹生成
    • 固定时间收敛误差动力学:针对滑翔飞行器的终端速度-角度约束,设计基于误差动力学的制导律,使收敛时间与初始误差无关。
    • 逆动力学优化:通过输出重定义和动态结构修改,实现欠驱动振动输送机的精确轨迹跟踪。
四、SE(3)框架下的反馈控制策略
  1. 几何控制方法
    • 采用SE(3)的几何力学框架设计控制律,如四旋翼无人机通过姿态-推力解耦实现轨迹跟踪。
    • 基于李代数se(3)se(3)的速度跟踪误差建模,结合自适应鲁棒补偿扰动。
  2. 智能控制融合
    • 深度强化学习(DRL) :改进TD3算法,通过优先经验回放和LSTM网络增强USV路径跟踪的鲁棒性。
    • 模糊小波网络:处理模型不确定性,在无人机姿态控制中实现动态参数调整。
五、协同设计典型案例
  1. 无人滑翔飞行器多约束制导
    • 集成终端角度约束制导(IACG)与固定时间收敛控制器,在SE(3)中同步满足速度/角度约束,Monte-Carlo仿真显示对阻力不确定性具有强适应性。
  2. 水下机器人三维轨迹跟踪
    • 基于虚拟向导法将非完整约束转化为完整子系统镇定问题,结合滑模递归分解抑制抖振。
六、挑战与未来方向
  1. 理论瓶颈
    • SE(3)流形上的非线性控制缺乏统一稳定性分析框架。
    • 多自由度欠驱动系统的零动态稳定性证明仍依赖个案研究。
  2. 技术趋势
    • 多智能体协同:探索欠驱动集群在SE(3)中的分布式编队控制。
    • 软体机器人应用:结合柔性动力学与欠驱动特性开发自适应抓取系统。
    • 数字孪生验证:通过高保真仿真加速算法迭代,如3自由度船舶操纵模拟。
七、结论

欠驱动机器人在SE(3)中的集成制导与反馈控制研究,需综合几何力学、非线性控制及智能算法等多学科工具。现有成果在特定场景(如USV路径跟踪、滑翔飞行器终端约束)中展现了可行性,但通用化理论与复杂环境适应性仍是未来攻关重点。随着强化学习与李群理论的深度结合,该领域有望在航空航天、水下探测等高风险任务中实现突破性应用。

📚2 运行结果

部分代码:

%% 加载函数路径
addpath(genpath(pwd));

%% 参数
global J M m e1 e2 e3 g mu...
    P L La p ki kp a1 a2 a3

% UAV参数
J = diag([0.0820,0.0845,0.1377]);
m = 4.34;                                 
M = m*eye(3);                             
g = 9.81;
e1 = [1;0;0];
e2 = [0;1;0];
e3 = [0;0;1]; 
mu = 4;

% 控制增益参数
P = 38*eye(3);
L = 25*eye(3);
La = 3.5*eye(3);
p = 0.75;
ki = 0.04;
kp = 4.5;
a1 = 1.2;
a2 = 1.1;
a3 = 1;
% A = diag([a1,a2,a3]);

% 初始状态参数
b0 = [1;0;0];        % 初始位矢
R0 = eye(3);        % 初始姿态
Om0=[0;0;0];      % 初始角速度
nu0 = [0;0;0];      % 初始线速度(体坐标系)

%% 仿真时间
h = .01;     % 步长
t0 = 0;
tf = 5;
TimeLength = tf - t0;
n = TimeLength/h;
t = linspace(t0,tf,n);


%% 预分配内存
Rd       = zeros(3,3,length(t));

......

%% LGVI (李群变分积分器)
for k = 1:n-1
    
    [bd(:,k+1),vd(:,k+1),dvd(:,k+1)] = desired_trans(t(k+1));
    
    F(:,:,k)      = MatrixExp3(h*VecToso3(Om(:,k)));
    R(:,:,k+1) = R(:,:,k) * F(:,:,k);
    b(:,k+1)   = h*R(:,:,k)*nu(:,k)+b(:,k);
    
    % 控制推力
    bt(:,k+1) = b(:,k+1)-bd(:,k+1);
    f(:,k)   = trans_control(R(:,:,k),bt(:,k),nu(:,k),vd(:,k),dvd(:,k));

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]刘庆波,余跃庆,苏丽颖.欠驱动机器人最优运动轨迹生成与跟踪控制[J].机械工程学报, 2009, 45(12):8.

[2]梁浩,余跃庆.基于模糊控制的3R欠驱动机器人轨迹跟踪研究[J].组合机床与自动化加工技术, 2015(5):5.

[3]梁浩,余跃庆.基于模糊控制的3R欠驱动机器人轨迹跟踪研究[J].组合机床与自动化加工技术, 2015.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值