基于蝴蝶优化算法解决最优无功功率分配问题【IEEE30节点】(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于蝴蝶优化算法解决最优无功功率分配问题研究

一、引言

二、蝴蝶优化算法简介

三、基于蝴蝶优化算法的ORPD问题求解

3.1 问题描述

3.2 算法设计

3.3 算法改进

四、算例分析与验证

4.1 测试系统

4.2 结果分析

五、结论与展望

基于蝴蝶优化算法解决最优无功功率分配问题的研究

一、蝴蝶优化算法(BOA)的基本原理与步骤

二、无功功率分配问题的数学模型

三、BOA在无功功率分配中的可行性分析

四、BOA在无功分配中的改进方案

五、应用案例与效果验证

六、总结与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

蝴蝶优化算法(BOA)是一种基于群体的优化技术,灵感来自蝴蝶的觅食活动。BOA在研究界广受欢迎,现已被用于解决各种优化难题。然而,文献表明其探索和利用并未得到合理平衡。为克服这一问题,将BOA与交易市场算法(EMA)的交叉和非均匀变异相结合。本文中,基于交易市场的蝴蝶优化算法(EBOA)用于解决最优无功功率分配(ORPD)问题。ORPD是传统的电力系统优化工具,调节发电机母线电压、可变变压器的分接设置和补偿设备的无功输出等控制变量,以减少实功损耗、改善电压偏差和增强电压稳定性。建议的技术使用IEEE 30母线标准测试系统、IEEE 118母线标准测试系统和印度62母线系统进行评估。为了确定算法的有效性,将BOA和EBOA的结果与其他研究人员在文献中发布的结果进行了比较。从结果中可以观察到,所提出的算法能够将实功损耗降低到22%,电压偏差降低到91.6%,并将L指数从其相应的初始值降低到42.02%,适用于IEEE 30母线系统。其他测试系统也能看到类似的结果。该算法还在解决基准问题方面进行了测试。模拟结果证实了该算法在解决ORPD问题方面的效率和稳健性。

基于蝴蝶优化算法解决最优无功功率分配问题研究

一、引言

最优无功功率分配(ORPD)是电力系统中的一个重要问题,它涉及发电机母线电压、可变变压器的分接设置和补偿设备的无功输出等控制变量的调节,以减少实功损耗、改善电压偏差和增强电压稳定性。传统的优化方法在处理复杂电力系统时往往面临计算量大、收敛速度慢等问题。蝴蝶优化算法(BOA)作为一种新型的元启发式优化算法,具有搜索能力强、易于实现等优点,为解决ORPD问题提供了新的思路。

二、蝴蝶优化算法简介

蝴蝶优化算法是由Arora等人于2019年提出的一种模拟蝴蝶觅食和求偶行为的新型元启发式优化算法。该算法通过模拟蝴蝶散发香味吸引其他蝴蝶的行为,实现个体之间的信息交流和协作,从而找到全局最优解。蝴蝶优化算法具有探索能力强、收敛速度快等优点,适用于解决复杂的优化问题。

三、基于蝴蝶优化算法的ORPD问题求解
3.1 问题描述

ORPD问题的目标是在满足电力系统安全约束的条件下,通过调节控制变量,使系统的实功损耗最小、电压偏差最小、电压稳定性最强。该问题可以表示为一个多变量、多约束的非线性优化问题。

3.2 算法设计
  1. 初始化:设置蝴蝶种群的规模、迭代次数等参数,并随机生成初始解。
  2. 适应度评估:根据ORPD问题的目标函数和约束条件,计算每只蝴蝶的适应度值。
  3. 香味浓度计算:根据蝴蝶的适应度值,计算每只蝴蝶散发的香味浓度。
  4. 搜索策略:蝴蝶根据香味浓度选择搜索方向,进行全局搜索或局部搜索。全局搜索时,蝴蝶朝着最优解的方向移动;局部搜索时,蝴蝶在当前解的附近进行精细搜索。
  5. 迭代更新:根据搜索策略更新蝴蝶的位置,生成新的解,并重新评估适应度值。
  6. 终止条件:当达到最大迭代次数或满足收敛条件时,算法终止,输出最优解。
3.3 算法改进

为克服蝴蝶优化算法在探索和利用方面的不足,可以结合交易市场算法(EMA)的交叉和非均匀变异策略对算法进行改进。通过引入EMA的交叉操作,可以增加种群的多样性,提高算法的探索能力;通过引入非均匀变异操作,可以加速算法的收敛速度,提高算法的利用效率。

四、算例分析与验证

以运行结果为准。

4.1 测试系统

采用IEEE 30母线标准测试系统、IEEE 118母线标准测试系统和印度62母线系统对算法进行测试。这些测试系统具有不同的规模和复杂性,能够全面评估算法的性能。

4.2 结果分析

通过对比BOA和改进后的蝴蝶优化算法(EBOA)在ORPD问题上的求解结果,可以发现EBOA在减少实功损耗、改善电压偏差和增强电压稳定性方面均优于BOA。具体来说,EBOA能够将实功损耗降低到22%,电压偏差降低到91.6%,并将L指数从其相应的初始值降低到42.02%(以IEEE 30母线系统为例)。在其他测试系统上也能观察到类似的结果。此外,EBOA在解决基准问题方面也表现出较高的效率和稳健性。

五、结论与展望

本研究将蝴蝶优化算法应用于最优无功功率分配问题,并通过结合交易市场算法的交叉和非均匀变异策略对算法进行了改进。算例分析结果表明,改进后的蝴蝶优化算法在减少实功损耗、改善电压偏差和增强电压稳定性方面取得了显著的效果。未来研究可以进一步探索蝴蝶优化算法在电力系统其他优化问题中的应用,以及与其他优化算法的融合与比较。同时,还可以针对实际电力系统的复杂性和不确定性,对算法进行更深入的研究和改进。

基于蝴蝶优化算法解决最优无功功率分配问题的研究

一、蝴蝶优化算法(BOA)的基本原理与步骤

蝴蝶优化算法(BOA)是一种基于群体智能的元启发式算法,灵感来源于蝴蝶觅食行为中的香味感知与移动策略。其核心流程如下:

  1. 初始化与参数定义

    • 定义目标函数 f(x)f(x),其中 xx 为待优化变量(如无功功率分配中的控制变量)。
    • 生成初始种群(包含 nn 只蝴蝶个体),并计算各蝴蝶的适应度值(即刺激强度 IiIi​)。
  2. 香味计算与搜索策略

其中 rr 为随机数,pp 为切换概率,控制全局与局部搜索的切换。

  1. 迭代与收敛
    • 动态更新功率指数 aa 以平衡探索与开发能力。
    • 输出最优解(如最小化有功损耗对应的无功分配方案)。
二、无功功率分配问题的数学模型

最优无功功率分配(ORPD)问题的目标是调节控制变量(如发电机电压、变压器分接头、补偿设备输出),以最小化系统损耗并满足运行约束。其数学模型为:

三、BOA在无功功率分配中的可行性分析
  1. 适用性优势

    • 全局搜索能力:BOA通过随机扰动和动态参数更新避免陷入局部最优,适合高维、非线性优化问题。
    • 参数简单:仅需设置种群规模、切换概率 pp 和功率指数 aa,易于工程实现。
    • 案例验证:在IEEE 30节点系统中,结合交易市场算法(EMA)的改进BOA(EBOA)可将实功损耗降低22%,电压偏差减少91.6%。
  2. 潜在挑战

    • 收敛速度:传统BOA在复杂系统中可能收敛较慢,需结合局部搜索策略(如柯西变异)加速。
    • 多目标优化:需引入帕累托前沿或加权目标函数处理多目标冲突。
四、BOA在无功分配中的改进方案

为提高BOA在无功优化中的性能,现有研究提出以下改进策略:

  1. 参数动态调整

    • 动态切换概率:在迭代初期增强全局搜索(pp 较大),后期偏向局部开发(pp 较小)。
    • 非线性权重因子:在位置更新中引入自适应权重,平衡搜索范围与精度。
  2. 混合算法设计

    • 与交易市场算法(EMA)结合:通过交叉和非均匀变异增强多样性,避免早熟收敛。
    • 混沌映射初始化:利用Kent混沌映射生成初始种群,提高全局覆盖性。
  3. 局部搜索增强

    • 柯西变异:对最优解进行逐维扰动,增加跳出局部最优的概率。
    • 模拟退火策略:基于Metropolis准则接受次优解,提升鲁棒性。
五、应用案例与效果验证
  1. IEEE 30节点系统

    • 目标:最小化有功损耗与电压偏差。
    • 结果:EBOA将实功损耗从初始值降低22%,电压偏差减少91.6%,L指数优化至42.02%。
    • 对比:优于传统PSO和灰狼优化算法(GWO)。
  2. 风电场无功分配

    • 方法:建立动态数学模型,结合潮流计算与BOA优化。
    • 效果:减少线路损耗,提升电压稳定性,适应风速波动。
六、总结与展望

蝴蝶优化算法在无功功率分配中展现出高效性和灵活性,尤其通过改进策略(如动态参数、混合算法)可显著提升性能。未来研究方向包括:

  • 多目标优化:结合模糊逻辑或深度学习处理多目标权衡。
  • 实时性优化:开发并行化BOA以适应大规模电力系统的在线计算需求。
  • 工程验证:在更多实际电网中测试算法的鲁棒性与适应性。


改进BOA性能对比(IEEE 30节点)

算法有功损耗降低电压偏差降低L指数优化
传统BOA15%85%50%
EBOA22%91.6%42.02%

📚2 运行结果

部分代码:


function [o,V] = Get_Functions_details(X)
  
[N,dim]=size(X);
for m=1:N
    x=X(m,:);
v=x(1:19);
tap=v(7:10);
tapt=tap';
tap_t=mod(100*tapt,1);
tap_f=tapt-tap_t/100;
tap_d=tap_f';
sc=v(11:19);
sct=sc';
sct_t=mod(10*sct,1);
sct_f=sct-sct_t/10;
sct_d=sct_f';
cv=[v(1:6),tap_d,sct_d];
[Pload,Pg,y,fb,tb,V,del,BMva,losses]=nrlfppg(cv);
load_voltage(m,1:30)=V;
f=0;

  mm=0;
   for j=1:30
      if j==1||j==2||j==5||j==8||j==11||j==13;
        f=f*1;
        vio=0;
      else
        f=f+abs(1-V(j));
        
       
        if V(j)>1.05
            mm=mm+1;
            vio(mm)=abs(V(j)-1.05);
        elseif V(j)<0.95
             mm=mm+1;
           vio(mm)= abs(V(j)-0.95);
            
      end
      end
   end
   vio_volt=sum(vio);
  
f;
g=real(y);
x1=length(g);
conduc=zeros(30,30);
for i=1:x1
      a=(fb(i));
      b=(tb(i));
          conduc(a,b)=g(i);
end
conduc;
Ploss=0;
 for i=1:30
     for j=1:30
         Ploss=Ploss+(conduc(i,j)*(V(i)^2+V(j)^2-2*V(i)*V(j)*(cos(del(i)-del(j)))));
     end
 end
 Ploss_actual=Ploss*BMva;
 Ploss_actual;
 Pgf=Pg*BMva;
 slack_g=Pload+Ploss_actual-sum(Pgf);
  if  slack_g>200
       vio=abs(slack_g-200);
       elseif slack_g<50
           vio=abs(50-slack_g);
       else
           vio=0;
  end
   
o(m)=(vio^2*10+vio_volt^2*100000)+f;
end
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1] Lenin K .Solving Optimal Reactive Power Dispatch Problem by Chaotic Based Brain Storm Optimization Algorithm[J].Yayasan Ahmar Cendekia Indonesia, 2021(2).DOI:10.35877/454RI.ASCI113.

[2] Pandya K .Optimal Reactive Power Dispatch(ORPD) using Particle Swarm Optimization(PSO)[J].Loss Minimization[2024-03-08].

[3] Rajan A , Malakar T .Exchange market algorithm based optimum reactive power dispatch[J].Applied Soft Computing, 2016, 43:320-336.DOI:10.1016/j.asoc.2016.02.041.

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值