Machine Learning 学习1

Machine Learning 学习1

从sklearn中获取鸢尾花数据集

先导入库

import sklearn

from sklearn.datasets import load_iris

定义在一个函数里面:

注意这里数据集是一个字典,对于data的value是一个array,使用shape可以快速了解此array的信息。

并且data为特征值,target为目标值

def datasets_demo():
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("数据集描述:\n", iris['DESCR'])
    print("Feature names:\n", iris['feature_names'])
    print("Feature figure:\n", iris['data'],iris.data.shape)
datasets_demo()

可以得到以下输出,即鸢尾花数据集的展示。

鸢尾花数据集:
{'data': array([[5.1, 3.5, 1.4, 0.2],
   [4.9, 3. , 1.4, 0.2],
   [4.7, 3.2, 1.3, 0.2],
   [4.6, 3.1, 1.5, 0.2],
   [5. , 3.6, 1.4, 0.2],
   [5.4, 3.9, 1.7, 0.4],
   [4.6, 3.4, 1.4, 0.3],
   [5. , 3.4, 1.5, 0.2],
   [4.4, 2.9, 1.4, 0.2],
   [4.9, 3.1, 1.5, 0.1],
   [5.4, 3.7, 1.5, 0.2],
   [4.8, 3.4, 1.6, 0.2],
   [4.8, 3. , 1.4, 0.1],
   [4.3, 3. , 1.1, 0.1],
   [5.8, 4. , 1.2, 0.2],
   [5.7, 4.4, 1.5, 0.4],
   [5.4, 3.9, 1.3, 0.4],
   [5.1, 3.5, 1.4, 0.3],
   [5.7, 3.8, 1.7, 0.3],
   [5.1, 3.8, 1.5, 0.3],
   [5.4, 3.4, 1.7, 0.2],
   [5.1, 3.7, 1.5, 0.4],
   [4.6, 3.6, 1. , 0.2],
   [5.1, 3.3, 1.7, 0.5],
   [4.8, 3.4, 1.9, 0.2],
   [5. , 3. , 1.6, 0.2],
   [5. , 3.4, 1.6, 0.4],
   [5.2, 3.5, 1.5, 0.2],
   [5.2, 3.4, 1.4, 0.2],
   [4.7, 3.2, 1.6, 0.2],
   [4.8, 3.1, 1.6, 0.2],
   [5.4, 3.4, 1.5, 0.4],
   [5.2, 4.1, 1.5, 0.1],
   [5.5, 4.2, 1.4, 0.2],
   [4.9, 3.1, 1.5, 0.2],
   [5. , 3.2, 1.2, 0.2],
   [5.5, 3.5, 1.3, 0.2],
   [4.9, 3.6, 1.4, 0.1],
   [4.4, 3. , 1.3, 0.2],
   [5.1, 3.4, 1.5, 0.2],
   [5. , 3.5, 1.3, 0.3],
   [4.5, 2.3, 1.3, 0.3],
   [4.4, 3.2, 1.3, 0.2],
   [5. , 3.5, 1.6, 0.6],
   [5.1, 3.8, 1.9, 0.4],
   [4.8, 3. , 1.4, 0.3],
   [5.1, 3.8, 1.6, 0.2],
   [4.6, 3.2, 1.4, 0.2],
   [5.3, 3.7, 1.5, 0.2],
   [5. , 3.3, 1.4, 0.2],
   [7. , 3.2, 4.7, 1.4],
   [6.4, 3.2, 4.5, 1.5],
   [6.9, 3.1, 4.9, 1.5],
   [5.5, 2.3, 4. , 1.3],
   [6.5, 2.8, 4.6, 1.5],
   [5.7, 2.8, 4.5, 1.3],
   [6.3, 3.3, 4.7, 1.6],
   [4.9, 2.4, 3.3, 1. ],
   [6.6, 2.9, 4.6, 1.3],
   [5.2, 2.7, 3.9, 1.4],
   [5. , 2. , 3.5, 1. ],
   [5.9, 3. , 4.2, 1.5],
   [6. , 2.2, 4. , 1. ],
   [6.1, 2.9, 4.7, 1.4],
   [5.6, 2.9, 3.6, 1.3],
   [6.7, 3.1, 4.4, 1.4],
   [5.6, 3. , 4.5, 1.5],
   [5.8, 2.7, 4.1, 1. ],
   [6.2, 2.2, 4.5, 1.5],
   [5.6, 2.5, 3.9, 1.1],
   [5.9, 3.2, 4.8, 1.8],
   [6.1, 2.8, 4. , 1.3],
   [6.3, 2.5, 4.9, 1.5],
   [6.1, 2.8, 4.7, 1.2],
   [6.4, 2.9, 4.3, 1.3],
   [6.6, 3. , 4.4, 1.4],
   [6.8, 2.8, 4.8, 1.4],
   [6.7, 3. , 5. , 1.7],
   [6. , 2.9, 4.5, 1.5],
   [5.7, 2.6, 3.5, 1. ],
   [5.5, 2.4, 3.8, 1.1],
   [5.5, 2.4, 3.7, 1. ],
   [5.8, 2.7, 3.9, 1.2],
   [6. , 2.7, 5.1, 1.6],
   [5.4, 3. , 4.5, 1.5],
   [6. , 3.4, 4.5, 1.6],
   [6.7, 3.1, 4.7, 1.5],
   [6.3, 2.3, 4.4, 1.3],
   [5.6, 3. , 4.1, 1.3],
   [5.5, 2.5, 4. , 1.3],
   [5.5, 2.6, 4.4, 1.2],
   [6.1, 3. , 4.6, 1.4],
   [5.8, 2.6, 4. , 1.2],
   [5. , 2.3, 3.3, 1. ],
   [5.6, 2.7, 4.2, 1.3],
   [5.7, 3. , 4.2, 1.2],
   [5.7, 2.9, 4.2, 1.3],
   [6.2, 2.9, 4.3, 1.3],
   [5.1, 2.5, 3. , 1.1],
   [5.7, 2.8, 4.1, 1.3],
   [6.3, 3.3, 6. , 2.5],
   [5.8, 2.7, 5.1, 1.9],
   [7.1, 3. , 5.9, 2.1],
   [6.3, 2.9, 5.6, 1.8],
   [6.5, 3. , 5.8, 2.2],
   [7.6, 3. , 6.6, 2.1],
   [4.9, 2.5, 4.5, 1.7],
   [7.3, 2.9, 6.3, 1.8],
   [6.7, 2.5, 5.8, 1.8],
   [7.2, 3.6, 6.1, 2.5],
   [6.5, 3.2, 5.1, 2. ],
   [6.4, 2.7, 5.3, 1.9],
   [6.8, 3. , 5.5, 2.1],
   [5.7, 2.5, 5. , 2. ],
   [5.8, 2.8, 5.1, 2.4],
   [6.4, 3.2, 5.3, 2.3],
   [6.5, 3. , 5.5, 1.8],
   [7.7, 3.8, 6.7, 2.2],
   [7.7, 2.6, 6.9, 2.3],
   [6. , 2.2, 5. , 1.5],
   [6.9, 3.2, 5.7, 2.3],
   [5.6, 2.8, 4.9, 2. ],
   [7.7, 2.8, 6.7, 2. ],
   [6.3, 2.7, 4.9, 1.8],
   [6.7, 3.3, 5.7, 2.1],
   [7.2, 3.2, 6. , 1.8],
   [6.2, 2.8, 4.8, 1.8],
   [6.1, 3. , 4.9, 1.8],
   [6.4, 2.8, 5.6, 2.1],
   [7.2, 3. , 5.8, 1.6],
   [7.4, 2.8, 6.1, 1.9],
   [7.9, 3.8, 6.4, 2. ],
   [6.4, 2.8, 5.6, 2.2],
   [6.3, 2.8, 5.1, 1.5],
   [6.1, 2.6, 5.6, 1.4],
   [7.7, 3. , 6.1, 2.3],
   [6.3, 3.4, 5.6, 2.4],
   [6.4, 3.1, 5.5, 1.8],
   [6. , 3. , 4.8, 1.8],
   [6.9, 3.1, 5.4, 2.1],
   [6.7, 3.1, 5.6, 2.4],
   [6.9, 3.1, 5.1, 2.3],
   [5.8, 2.7, 5.1, 1.9],
   [6.8, 3.2, 5.9, 2.3],
   [6.7, 3.3, 5.7, 2.5],
   [6.7, 3. , 5.2, 2.3],
   [6.3, 2.5, 5. , 1.9],
   [6.5, 3. , 5.2, 2. ],
   [6.2, 3.4, 5.4, 2.3],
   [5.9, 3. , 5.1, 1.8]]), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
   2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
   2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'frame': None, 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'), 'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set Characteristics:**\n\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n                \n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\n.. topic:: References\n\n   - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...', 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'filename': '/Users/haoyuhuang/opt/anaconda3/lib/python3.8/site-packages/sklearn/datasets/data/iris.csv'}
数据集描述:
.. _iris_dataset:
Iris plants dataset
--------------------

**Data Set Characteristics:**

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
    - sepal length in cm
    - sepal width in cm
    - petal length in cm
    - petal width in cm
    - class:
            - Iris-Setosa
            - Iris-Versicolour
            - Iris-Virginica
            
:Summary Statistics:

============== ==== ==== ======= ===== ====================
                Min  Max   Mean    SD   Class Correlation
============== ==== ==== ======= ===== ====================
sepal length:   4.3  7.9   5.84   0.83    0.7826
sepal width:    2.0  4.4   3.05   0.43   -0.4194
petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)
============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.  One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

.. topic:: References

- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
 Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
 Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
 (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
 Structure and Classification Rule for Recognition in Partially Exposed
 Environments".  IEEE Transactions on Pattern Analysis and Machine
 Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
 on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
 conceptual clustering system finds 3 classes in the data.
- Many, many more ...
Feature names:
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
Feature figure:
 [[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5.  3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5.  3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3.  1.4 0.1]
[4.3 3.  1.1 0.1]
[5.8 4.  1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1.  0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5.  3.  1.6 0.2]
[5.  3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5.  3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3.  1.3 0.2]
[5.1 3.4 1.5 0.2]
[5.  3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5.  3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3.  1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5.  3.3 1.4 0.2]
[7.  3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4.  1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5.  2.  3.5 1. ]
[5.9 3.  4.2 1.5]
[6.  2.2 4.  1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3.  4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4.  1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3.  4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3.  5.  1.7]
[6.  2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6.  2.7 5.1 1.6]
[5.4 3.  4.5 1.5]
[6.  3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3.  4.1 1.3]
[5.5 2.5 4.  1.3]
[5.5 2.6 4.4 1.2]
[6.1 3.  4.6 1.4]
[5.8 2.6 4.  1.2]
[5.  2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3.  4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3.  1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6.  2.5]
[5.8 2.7 5.1 1.9]
[7.1 3.  5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3.  5.8 2.2]
[7.6 3.  6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3.  5.5 2.1]
[5.7 2.5 5.  2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3.  5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6.  2.2 5.  1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6.  1.8]
[6.2 2.8 4.8 1.8]
[6.1 3.  4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3.  5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3.  6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6.  3.  4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3.  5.2 2.3]
[6.3 2.5 5.  1.9]
[6.5 3.  5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3.  5.1 1.8]] (150, 4)

接下来进行训练集和测试集的划分。

这里直接用sklearn.model_selection里面的train_test_split的API即可,不过要注意它的返回着顺序,优先返回特征值,然后返回目标值,然后训练集再是测试集。如下:

from sklearn.model_selection import train_test_split

def datasets_split():
    
    iris = load_iris()
    # 特征值
    X = iris['data']
    # 目标值
    Y = iris['target']

    X_test, X_train, Y_test, Y_train = train_test_split(X, Y, test_size = 0.2) # 默认0.25
    
    print("Train set data:\n", X_train, X_train.shape)

datasets_split()

输出训练集的特征值如下:

Train set data:
[[6.  2.2 5.  1.5]
[5.  3.4 1.6 0.4]
[5.2 3.4 1.4 0.2]
[6.7 3.3 5.7 2.1]
[5.  3.4 1.5 0.2]
[5.1 3.4 1.5 0.2]
[6.4 2.7 5.3 1.9]
[6.1 2.9 4.7 1.4]
[6.  3.  4.8 1.8]
[7.1 3.  5.9 2.1]
[5.7 2.9 4.2 1.3]
[5.5 2.5 4.  1.3]
[6.7 3.  5.  1.7]
[6.2 2.9 4.3 1.3]
[6.  2.9 4.5 1.5]
[6.3 2.7 4.9 1.8]
[4.8 3.4 1.6 0.2]
[5.5 2.6 4.4 1.2]
[6.7 2.5 5.8 1.8]
[5.8 2.7 5.1 1.9]
[6.4 2.8 5.6 2.2]
[4.4 3.  1.3 0.2]
[6.1 2.8 4.7 1.2]
[5.  3.5 1.3 0.3]
[5.8 2.8 5.1 2.4]
[6.4 2.9 4.3 1.3]
[7.2 3.  5.8 1.6]
[5.1 3.8 1.6 0.2]
[6.1 2.6 5.6 1.4]
[5.1 3.3 1.7 0.5]] (30, 4)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值