人工智能之数学基础----指数函数和对数函数

本章主要回顾指数函数和对数函数,指数函数和对数函数求导

  1. 回顾指数函数和对数函数的基础知识
  2. e e e 的定义和性质
  3. 如何对指数函数和对数函数求导
  4. 指数函数和对数函数的极限求解
  5. 对数函数的微分
基础知识

下面的数表示是一个以2为底,指数为3的幂
2 3 2^{3} 23
对于任意底数 b > 0 b>0 b>0和实数 x x x y y y都满足下面的指数法则

  1. 任意非零数的0次幂都等于1 b 0 = 0 b^{0}=0 b0=0
  2. 任意数的1次幂就是它本身 b 1 = b b^{1}=b b1=b
  3. 将两个底数相同的幂相乘时,将指数相加 b x b y = b x + y b^{x}b^{y}=b^{x+y} bxby=bx+y
  4. 将两个底数相同的幂相除时,将分子的指数减去分母的指数 b x b y = b x − y \frac{b^{x}}{b^{y}}=b^{x-y} bybx=bxy
  5. 取幂的幂时,指数相乘 ( b x ) y = b x y (b^{x})^{y}=b^{xy} (bx)y=bxy
对数函数回顾

方程 2 x = 7 2^{x}=7 2x=7中求解 x x x,将 x x x从指数的位置一下来的方法是对方程取对数
x = l o g 2 ( 7 ) x=log_{2}(7) x=log2(7) 换句话说就是“必须将2提升几次幂才得到7?”,答案是 l o g 2 ( 7 ) log_{2}(7) log2(7)

  1. 在方程中底数必须大于0,例如在方程: ( − 1 ) 1 2 (-1)^{\frac{1}{2}} (1)21,即: − 1 \sqrt{-1} 1 ;这个方程的底数-1是不是很怪异,所以我们约定指数函数的底数必须大于0
  2. 在方程中底数不等于1,设方程 1 x = 1 1^{x}=1 1x=1,因为1的任意次方等于1本身,假设现在 x = 4 x=4 x=4;然后通过对数函数求 x = l o g 1 ( 1 ) x=log_{1}(1) x=log1(1)反过来求 x x x没有对应的值,所以当底数为1的指数函数是没有研究价值的。
  3. 因为底数大于零,并且不等于1,所以 y = b x > 0 y=b^{x}>0 y=bx>0;即: y > 0 y>0 y>0
    综上所述,在方程中 y = b x y=b^{x} y=bx y > 0 , ( b > 0 , b ≠ 1 ) y>0 ,(b>0,b\neq 1) y>0,(b>0,b=1)
指数函数、对数函数及反函数

为了加深函数的理解,下面我们通过python可视化来分别讲解

我们就以 y = 2 x y=2^{x} y=2x来讲解,其中 x x x定义域是[-5,5]之间,我们列出11个 x x x值列表
[ − 5 , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 ] [-5,-4,-3,-2,-1,0,1,2,3,4,5] [5,4,3,2,1,0,1,2,3,4,5]然后将上面的 x x x列表代入公式计算得
[ 1 32 , 1 16 , 1 8 , 1 4 , 1 2 , 1 , 2 , 4 , 8 , 16 , 32 ] [\frac{1}{32},\frac{1}{16},\frac{1}{8},\frac{1}{4},\frac{1}{2},1,2,4,8,16,32] [321,161,81,41,21,1,2,4,8,16,32]现在我们把这些散点图展示在坐标系中,看看效果

def nine():
    plt.figure()
    setting6()      #坐标系设置

    x = np.linspace(-5,5,11,np.float32)  #x轴取[-5,5]区间11个值
    y = np.power(2,x)   #y=2^{x}   y是底数为2的x次方
    
    #下面是为了方便数据可视化,把小数转为分数
    y_list=[]
    for v in y:
        y_list.append(str(Fraction(v)))#把小数转为分数显示

    print(x)
    print(y_list)

打印如下

[-5. -4. -3. -2. -1.  0.  1.  2.  3.  4.  5.]
['1/32', '1/16', '1/8', '1/4', '1/2', '1', '2', '4', '8', '16', '32']

关于坐标系的美化

def setting6():
    plt.gca().set_title("指数|对数|反函数", fontproperties='Microsoft YaHei')
    plt.gca().spines['right'].set_color('none')  # 设置右边框为无色
    plt.gca().spines['top'].set_color('none')  # 设置顶部边框为无色
    plt.gca().spines["bottom"].set_position(('data', 0))  # 设置底边框从数轴0开始
    plt.gca().spines["left"].set_position(('data', 0))  # 设置左边框从数轴0开始
    plt.ylim(-5, 5)  #y轴可视化区域
    plt.xlim(-5, 5)  #x轴可视化区域

打印效果和我们上面分析是一样的,这里显示字符串出吧小数转为分数为了方便可视化做的处理,不用理会

现在我们把上面散点图现在是坐标系,看看效果图,有个直观的理解

在上面的代码追加此行接口

 plt.scatter(x,y)

效果图入线
在这里插入图片描述加入下面的一行代码,把各个点用线连接起来,效果会更加明显

plt.plot(x, y)

在这里插入图片描述

这就是函数 f ( x ) = 2 x f(x)=2^{x} f(x)=2x的图像,定义域为 R \mathbb{R} R任意自然数,值域为 ( 0 , + ∞ ) \left ( 0,+\infty \right ) (0,+)
该指数函数对应的对数函数为 g ( x ) = l o g 2 ( x ) g(x)=log_{2}(x) g(x)=log2(x) g ( x ) g(x) g(x)也是 f ( x ) f(x) f(x)的反函数,根据反函数的性质:

  1. 原函数 f ( x ) f(x) f(x)的定义域是反函数 g ( x ) g(x) g(x)值域;
  2. 原函数 f ( x ) f(x) f(x)的值域是反函数 g ( x ) g(x) g(x)的定义域
    g ( x ) = l o g 2 ( x ) g(x)=log_{2}(x) g(x)=log2(x) x ⊆ ( 0 , + ∞ ) ; y ⊆ R x\subseteq (0,+\infty ) ; y\subseteq\mathbb{R} x(0,+);yR

根据上面的定义我们可以把指数函数 f ( x ) f(x) f(x)的值域 y y y作为对数函数 g ( x ) g(x) g(x)的定义域 x x x,看看对数函数 g ( x ) g(x) g(x)计算出来的值是否和指数函数 f ( x ) f(x) f(x)的定义域的值一样

def nine():
    plt.figure(figsize=(4,4))
    setting6()      #坐标系设置

    x = np.linspace(-5,5,11,np.float32)  #x轴取[-5,5]区间11个值
    y = np.power(2,x)   #y=2^{x}   y是底数为2的x次方

    #下面是为了方便数据可视化,把小数转为分数
    y_list=[]
    for v in y:
        y_list.append(str(Fraction(v)))#把小数转为分数显示

    print("f(x)定义域的值:",x)
    print("f(x)值域的值:",y_list)

    plt.scatter(x,y)
    plt.plot(x, y)

    x = y   #把f(x)的值域换成g(x)的定义域
    y = np.log2(x)   #通过对数函数g(x)计算出的值域

    x_list = []
    for v in x:
        x_list.append(str(Fraction(v)))  # 把小数转为分数显示
    print("g(x)定义域的值:",x_list)
    print("g(x)值域的值:",y)

    #绘制可视化图像(对数函数有个直观的了解)
    plt.scatter(x, y)
    plt.plot(x, y)

    plt.show()

代码19行把指数函数f(x)的值域赋值 x x x;第20行通过对数函数,该对数函数的底数为2,定义域的值为 x x x;最后计算出 y y y。第25、26把对数函数的定义域和值域对应的值全部打印出来

f(x)定义域的值: [-5. -4. -3. -2. -1.  0.  1.  2.  3.  4.  5.]
f(x)值域的值: ['1/32', '1/16', '1/8', '1/4', '1/2', '1', '2', '4', '8', '16', '32']
g(x)定义域的值: ['1/32', '1/16', '1/8', '1/4', '1/2', '1', '2', '4', '8', '16', '32']
g(x)值域的值: [-5. -4. -3. -2. -1.  0.  1.  2.  3.  4.  5.]

从结果可以看出,指数函数和对数函数互为反函数,下图是一个直观的了解
在这里插入图片描述从上图可以看出指数函数和对数函数互为反函数,关于 y = x y=x y=x对称

由于 f ( x ) f(x) f(x) g ( x ) g(x) g(x)互为反函数,所以 f ( g ( x ) ) = x f(g(x))=x f(g(x))=x g ( f ( x ) ) = x g(f(x))=x g(f(x))=x;下面我们根据实例来阐述这个事实


  1. 令: f ( x ) = 2 x f(x)=2^{x} f(x)=2x
    x = [ − 5 , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 ] x=[−5,−4,−3,−2,−1,0,1,2,3,4,5] x=[5,4,3,2,1,0,1,2,3,4,5] 那么计算出来对应
    y = [ 1 32 , 1 16 , 1 8 , 1 4 , 1 2 , 1 , 2 , 4 , 8 , 16 , 32 ] y=[\frac{1}{32},\frac{1}{16},\frac{1}{8},\frac{1}{4},\frac{1}{2},1,2,4,8,16,32] y=[321,161,81,41,21,1,2,4,8,16,32]

  1. 令: g ( x ) = l o g 2 ( x ) g(x)=log_{2}(x) g(x)=log2(x)
    x = [ 1 32 , 1 16 , 1 8 , 1 4 , 1 2 , 1 , 2 , 4 , 8 , 16 , 32 ] x=[\frac{1}{32},\frac{1}{16},\frac{1}{8},\frac{1}{4},\frac{1}{2},1,2,4,8,16,32] x=[321,161,81,41,21,1,2,4,8,16,32]那么计算出来对应
    y = [ − 5 , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 ] y=[−5,−4,−3,−2,−1,0,1,2,3,4,5] y=[5,4,3,2,1,0,1,2,3,4,5]

f ( x ) = 2 x = [ 1 32 , 1 16 , 1 8 , 1 4 , 1 2 , 1 , 2 , 4 , 8 , 16 , 32 ] f(x)=2^{x}=[\frac{1}{32},\frac{1}{16},\frac{1}{8},\frac{1}{4},\frac{1}{2},1,2,4,8,16,32] f(x)=2x=[321,161,81,41,21,1,2,4,8,16,32];大家是否注意指数函数 f ( x ) f(x) f(x)的输出恰好就是对数函数g(x)的输入
因此: g ( x ) = g ( f ( x ) ) = l o g 2 f ( x ) = l o g 2 ( 2 x ) = x g(x)=g(f(x))=log_{2}f(x)=log_{2}(2^{x})=x g(x)=g(f(x))=log2f(x)=log2(2x)=x


g ( x ) = l o g 2 x = [ − 5 , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 ] g(x)=log_{2}x=[−5,−4,−3,−2,−1,0,1,2,3,4,5] g(x)=log2x=[5,4,3,2,1,0,1,2,3,4,5];大家是否注意对数函数 g ( x ) g(x) g(x)的输出恰好是指数函数 f ( x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值