角度三角函数\frac{角度}{三角函数}三角函数角度 | 000^{0}00 | 30030^{0}300 | 45045^{0}450 | 60060^{0}600 | 90090^{0}900 |
---|---|---|---|---|---|
sinαsin\alphasinα | 0 | 12\frac{1}{2}21 | 22\frac{\sqrt{2}}{2}22 | 32\frac{\sqrt{3}}{2}23 | 1 |
cosαcos\alphacosα | 1 | 32\frac{\sqrt{3}}{2}23 | 22\frac{\sqrt{2}}{2}22 | 12\frac{\sqrt{1}}{2}21 | 0 |
tanαtan\alphatanα | 0 | 33\frac{\sqrt{3}}{3}33 | 1 | 3\sqrt{3}3 | 无 |
cotαcot\alphacotα | 无 | 3\sqrt{3}3 | 1 | 33\frac{\sqrt{3}}{3}33 | 0 |
微积分里面常用的三角恒等式
三角恒等式 |
---|
cos2θ+sin2θ=1cos^2\theta +sin^2\theta =1cos2θ+sin2θ=1 |
sin(α+β)=sinαcosβ+cosαsinβsin(\alpha+\beta )=sin\alpha cos\beta+cos\alpha sin\betasin(α+β)=sinαcosβ+cosαsinβ |
cos(α+β)=cosαcosβ−sinαsinβcos(\alpha+\beta )=cos\alpha cos\beta-sin\alpha sin\betacos(α+β)=cosαcosβ−sinαsinβ |
sin(2θ)=2sinθcosθsin(2\theta )=2sin\theta cos\thetasin(2θ)=2sinθcosθ |
cos(2θ)=cos2θ−sin2θcos(2\theta )=cos^2\theta -sin^2\thetacos(2θ)=cos2θ−sin2θ |
cos2θ=1+cos(2θ)2cos^2\theta =\frac{1+cos(2\theta )}{2}cos2θ=21+cos(2θ) |
sin2θ=1−cos(2θ)2sin^2\theta =\frac{1-cos(2\theta )}{2}sin2θ=21−cos(2θ) |
其实这些三角恒等式里面我们只需要记住前面的三个公式就可以
sin2θ+cos2θ=1sin^2 \theta + cos^2 \theta =1sin2θ+cos2θ=1 这个公式是非常好记住的,下面这两个存在符号问题,比较难记,但是我们也得记住,考试之前,先在草稿纸上写出来
sin(α+β)=sinαcosβ+cosαsinβsin(\alpha+\beta)=sin\alpha cos\beta+cos\alpha sin\betasin(α+β)=sinαcosβ+cosαsinβ
cos(α+β)=cosαcosβ−sinαsinβcos(\alpha+\beta)=cos\alpha cos\beta - sin\alpha sin\betacos(α+β)=cosαcosβ−sinαsinβ
我们只要记住这三个三角恒等式,通过第二、三个可以推导出另外四个;
假如现在我们正在进入考场,监考老师发下草稿纸,我们就在上面写好这三个公式,显然第一个是非常好记忆的,闭眼都可以写出来,第二、三个就需要谨慎了。
开始推导吧!
假如α\alphaα=β\betaβ,那么上面的第二个公式就可以把α\alphaα替换成β\betaβ 得sin(β+β)=sinβcosβ+cosβsinβsin(\beta+\beta)=sin\beta cos\beta+cos\beta sin\betasin(β+β)=sinβcosβ+cosβsinβ 整理得
sin(2β)=sinβcosβ+sinβcosβ=2sinβcosβsin(2\beta)=sin\beta cos\beta+ sin\beta cos\beta=2sin\beta cos\betasin(2β)=sinβcosβ+sinβcosβ=2sinβcosβ如果我们把β\betaβ替换成θ\thetaθ不就是我们公式列表里面的
sin(2θ)=2sinθcosθsin(2\theta)=2sin\theta cos\thetasin(2θ)=2sinθcosθ 吗?
接下来我们以同样的方式来推导另外一个,还是假如α\alphaα=β\betaβ
cos(β+β)=cosβcosβ−sinβsinβcos(\beta+\beta)=cos\beta cos\beta - sin\beta sin\betacos(β+β)=cosβcosβ−sinβsinβ整理得
cos(2β)=cos2β−sin2βcos(2\beta)=cos^2\beta - sin^2\betacos(2β)=cos2β−sin2β如果我们把β\betaβ替换成θ\thetaθ不就是我们公式列表里面的
cos(2θ)=cos2θ−sin2θcos(2\theta)=cos^2\theta - sin^2\thetacos(2θ)=cos2θ−sin2θ 吗?
因为sin2θ+cos2θ=1⇒sin2θ=1−cos2θsin^2 \theta + cos^2 \theta =1 \Rightarrow sin^2 \theta=1-cos^2 \thetasin2θ+cos2θ=1⇒sin2θ=1−cos2θ所以
cos(2θ)=cos2θ−sin2θ=cos2θ−(1−cos2θ)cos(2\theta)=cos^2\theta - sin^2\theta=cos^2\theta -(1-cos^2 \theta)cos(2θ)=cos2θ−sin2θ=cos2θ−(1−cos2θ)整理得cos(2θ)=2cos2θ−1cos(2\theta)=2cos^2\theta -1cos(2θ)=2cos2θ−1再次整理就得到我们上面公式列表的公式了
cos2θ=1+cos(2θ)2cos^2\theta=\frac{1+cos(2\theta)}{2}cos2θ=21+cos(2θ)
同样的方式我们可以证明最后一个公式
因为sin2θ+cos2θ=1⇒cos2θ=1−sin2θsin^2 \theta + cos^2 \theta =1 \Rightarrow cos^2 \theta=1-sin^2 \thetasin2θ+cos2θ=1⇒cos2θ=1−sin2θ所以
cos(2θ)=cos2θ−sin2θ=(1−sin2θ)−sin2θcos(2\theta)=cos^2\theta - sin^2\theta=(1-sin^2\theta) - sin^2\thetacos(2θ)=cos2θ−sin2θ=(1−sin2θ)−sin2θ整理得
cos(2θ)=1−2sin2θcos(2\theta)=1-2sin^2\thetacos(2θ)=1−2sin2θ 再次整理就得到我们上面公式列表的公式了
sin2θ=1−cos(2θ)2sin^2\theta=\frac{1-cos(2\theta)}{2}sin2θ=21−cos(2θ)
好了,这样就证明完了,对于像我这种懒人来说是件好事,我们就是懒人又咋的