常用的三角函数

本文详细介绍了常见角度的三角函数值,包括正弦、余弦、正切和余切,并深入探讨了微积分中常用的三角恒等式。通过推导展示了如何从基本公式出发,得出复杂的三角函数关系。
角度三角函数\frac{角度}{三角函数}000^{0}0030030^{0}30045045^{0}45060060^{0}60090090^{0}900
sinαsin\alphasinα012\frac{1}{2}2122\frac{\sqrt{2}}{2}2232\frac{\sqrt{3}}{2}231
cosαcos\alphacosα132\frac{\sqrt{3}}{2}2322\frac{\sqrt{2}}{2}2212\frac{\sqrt{1}}{2}210
tanαtan\alphatanα033\frac{\sqrt{3}}{3}3313\sqrt{3}3
cotαcot\alphacotα3\sqrt{3}3133\frac{\sqrt{3}}{3}330

微积分里面常用的三角恒等式

三角恒等式
cos2θ+sin2θ=1cos^2\theta +sin^2\theta =1cos2θ+sin2θ=1
sin(α+β)=sinαcosβ+cosαsinβsin(\alpha+\beta )=sin\alpha cos\beta+cos\alpha sin\betasin(α+β)=sinαcosβ+cosαsinβ
cos(α+β)=cosαcosβ−sinαsinβcos(\alpha+\beta )=cos\alpha cos\beta-sin\alpha sin\betacos(α+β)=cosαcosβsinαsinβ
sin(2θ)=2sinθcosθsin(2\theta )=2sin\theta cos\thetasin(2θ)=2sinθcosθ
cos(2θ)=cos2θ−sin2θcos(2\theta )=cos^2\theta -sin^2\thetacos(2θ)=cos2θsin2θ
cos2θ=1+cos(2θ)2cos^2\theta =\frac{1+cos(2\theta )}{2}cos2θ=21+cos(2θ)
sin2θ=1−cos(2θ)2sin^2\theta =\frac{1-cos(2\theta )}{2}sin2θ=21cos(2θ)

其实这些三角恒等式里面我们只需要记住前面的三个公式就可以
sin2θ+cos2θ=1sin^2 \theta + cos^2 \theta =1sin2θ+cos2θ=1 这个公式是非常好记住的,下面这两个存在符号问题,比较难记,但是我们也得记住,考试之前,先在草稿纸上写出来
sin(α+β)=sinαcosβ+cosαsinβsin(\alpha+\beta)=sin\alpha cos\beta+cos\alpha sin\betasin(α+β)=sinαcosβ+cosαsinβ
cos(α+β)=cosαcosβ−sinαsinβcos(\alpha+\beta)=cos\alpha cos\beta - sin\alpha sin\betacos(α+β)=cosαcosβsinαsinβ
我们只要记住这三个三角恒等式,通过第二、三个可以推导出另外四个;
假如现在我们正在进入考场,监考老师发下草稿纸,我们就在上面写好这三个公式,显然第一个是非常好记忆的,闭眼都可以写出来,第二、三个就需要谨慎了。

开始推导吧!

假如α\alphaα=β\betaβ,那么上面的第二个公式就可以把α\alphaα替换成β\betaβsin(β+β)=sinβcosβ+cosβsinβsin(\beta+\beta)=sin\beta cos\beta+cos\beta sin\betasin(β+β)=sinβcosβ+cosβsinβ 整理得
sin(2β)=sinβcosβ+sinβcosβ=2sinβcosβsin(2\beta)=sin\beta cos\beta+ sin\beta cos\beta=2sin\beta cos\betasin(2β)=sinβcosβ+sinβcosβ=2sinβcosβ如果我们把β\betaβ替换成θ\thetaθ不就是我们公式列表里面的
sin(2θ)=2sinθcosθsin(2\theta)=2sin\theta cos\thetasin(2θ)=2sinθcosθ 吗?


接下来我们以同样的方式来推导另外一个,还是假如α\alphaα=β\betaβ
cos(β+β)=cosβcosβ−sinβsinβcos(\beta+\beta)=cos\beta cos\beta - sin\beta sin\betacos(β+β)=cosβcosβsinβsinβ整理得
cos(2β)=cos2β−sin2βcos(2\beta)=cos^2\beta - sin^2\betacos(2β)=cos2βsin2β如果我们把β\betaβ替换成θ\thetaθ不就是我们公式列表里面的
cos(2θ)=cos2θ−sin2θcos(2\theta)=cos^2\theta - sin^2\thetacos(2θ)=cos2θsin2θ 吗?


因为sin2θ+cos2θ=1⇒sin2θ=1−cos2θsin^2 \theta + cos^2 \theta =1 \Rightarrow sin^2 \theta=1-cos^2 \thetasin2θ+cos2θ=1sin2θ=1cos2θ所以
cos(2θ)=cos2θ−sin2θ=cos2θ−(1−cos2θ)cos(2\theta)=cos^2\theta - sin^2\theta=cos^2\theta -(1-cos^2 \theta)cos(2θ)=cos2θsin2θ=cos2θ(1cos2θ)整理得cos(2θ)=2cos2θ−1cos(2\theta)=2cos^2\theta -1cos(2θ)=2cos2θ1再次整理就得到我们上面公式列表的公式了
cos2θ=1+cos(2θ)2cos^2\theta=\frac{1+cos(2\theta)}{2}cos2θ=21+cos(2θ)


同样的方式我们可以证明最后一个公式
因为sin2θ+cos2θ=1⇒cos2θ=1−sin2θsin^2 \theta + cos^2 \theta =1 \Rightarrow cos^2 \theta=1-sin^2 \thetasin2θ+cos2θ=1cos2θ=1sin2θ所以
cos(2θ)=cos2θ−sin2θ=(1−sin2θ)−sin2θcos(2\theta)=cos^2\theta - sin^2\theta=(1-sin^2\theta) - sin^2\thetacos(2θ)=cos2θsin2θ=(1sin2θ)sin2θ整理得
cos(2θ)=1−2sin2θcos(2\theta)=1-2sin^2\thetacos(2θ)=12sin2θ 再次整理就得到我们上面公式列表的公式了
sin2θ=1−cos(2θ)2sin^2\theta=\frac{1-cos(2\theta)}{2}sin2θ=21cos(2θ)

好了,这样就证明完了,对于像我这种懒人来说是件好事,我们就是懒人又咋的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值