人工智能之数学基础----勾股定理论证

通过构造8个全等直角三角形和3个正方形,证明了勾股定理:a² + b² = c²。这个几何原理在机器学习和深度学习中有着基础性作用,例如在图像处理和几何计算中。一个实际案例展示了如何利用勾股定理求解直角三角形的斜边长度,通过代码实现直接计算得出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
做8个全等的直角三角形,设它们的两条直角边长为a、b,斜边长为c,再做三个边长为a、b、c
的正方形,使它们像上图那样拼成两个正方形。
从图上可以看到,这两个正方形的边长都为(a+b),所以这两个正方形面积相等。

左图面积 右图面积
a 2 + b 2 + 4 ∗ 1 2 a b a^{2}+b^{2}+4*\frac{1}{2}ab a2+b2+421ab c 2 + 4 ∗ 1 2 a b c^{2}+4 * \frac{1}{2}ab c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值