机器学习

1. 简介

机器学习是从数据自动分析获得模型,并利用模型对未知数据进行预测。

机器学习

2. 工作流程

机器学习工作流程

  • 机器学习工作流程总结
    • 1.获取数据
    • 2.数据基本处理
    • 3.特征工程
    • 4.机器学习(模型训练)
    • 5.模型评估
      • 结果达到要求,上线服务
      • 没有达到要求,重新上面步骤

2.1 获取数据集

获取房屋价格数据集

获取电影类型数据集

获取无监督学习数据集

1. 简介

  • 一行数据我们称为一个样本
  • 一列数据我们成为一个特征
  • 有些数据有目标值(标签值),有些数据没有目标值(如上表中,电影类型就是这个数据集的目标值)

2. 数据类型构成

  • 数据类型一:特征值+目标值(目标值是连续的和离散的)
  • 数据类型二:只有特征值,没有目标值

3. 数据分割

  • 机器学习一般的数据集会划分为两个部分:
    • 训练数据:用于训练,构建模型
    • 测试数据:在模型检验时使用,用于评估模型是否有效
  • 划分比例:
    • 训练集:70% 80% 75%
    • 测试集:30% 20% 25%

2.2 数据基本处理

  • 即对数据进行缺失值、去除异常值等处理

2.3 特征工程(Feature Engineering)

1. 简介

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

2. 意义

  • 会直接影响机器学习的效果

3. 作用

机器学习领域的大神Andrew Ng(吴恩达)老师说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied machine learning” is basically feature engineering. ”

注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

4. 内容

  • 特征提取
  • 特征预处理
  • 特征降维
4.1 特征提取
  • 将任意数据(如文本或图像)转换为可用于机器学习的数字特征

特征提取

4.2 特征预处理
  • 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程

特征预处理

4.3 特征降维
  • 就是改变特征值,选择哪列保留,哪列删除
  • 目标是得到一组”不相关“的主变量
1. 定义

特征降维

  • 指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程
2. 分类
  • 降低随机变量的个数
    在这里插入图片描述
  • 相关特征(correlated feature)
    • 相对湿度与降雨量之间的相关
3. 作用
  • 在进行训练的时候,都是使用特征进行学习。
  • 如果特征本身存在问题或者特征之间相关性较强,对于算法学习预测会影响较大
4. 方式
  • 特征选择
  • 主成分分析(可以理解一种特征提取的方式)
1. 特征选择
  1. 定义

数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。

特征选择
2. 方法

  • Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
    • 方差选择法:低方差特征过滤,如果某个特征列的方差小于指定的阈值,则无法通过该特征区分不同样本,所以去掉该特征
    • 相关系数
      • 如果特征列间相关性很高,则其中一列可以用另外一列代替
      • 特征列和目标值之间相关性低,则去掉该列
  • Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)
    • 正则化:L1、L2
    • 决策树:信息熵、信息增益
    • 深度学习:卷积等
  • 低方差特征过滤

删除低方差的一些特征,再结合方差的大小来考虑这个方式的角度。

  • 特征方差小:某个特征大多样本的值比较相近
  • 特征方差大:某个特征很多样本的值都有差别
  • API
sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
删除所有低方差特征
Variance.fit_transform(X)
X:numpy array格式的数据[n_samples,n_features]
返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。
  • 数据计算
    某些股票的指标特征之间进行一个筛选,除去’index,‘date’,'return’列不考虑(这些类型不匹配,也不是所需要指标)

一共这些特征

pe_ratio,pb_ratio,market_cap,return_on_asset_net_profit,du_return_on_equity,ev,earnings_per_share,revenue,total_expense
index,pe_ratio,pb_ratio,market_cap,return_on_asset_net_profit,du_return_on_equity,ev,earnings_per_share,revenue,total_expense,date,return
0,000001.XSHE,5.9572,1.1818,85252550922.0,0.8008,14.9403,1211444855670.0,2.01,20701401000.0,10882540000.0,2012-01-31,0.027657228229937388
1,000002.XSHE,7.0289,1.588,84113358168.0,1.6463,7.8656,300252061695.0,0.326,29308369223.2,23783476901.2,2012-01-31,0.08235182370820669
2,000008.XSHE,-262.7461,7.0003,517045520.0,-0.5678,-0.5943,770517752.56,-0.006,11679829.03,12030080.04,2012-01-31,0.09978900335112327
3,000060.XSHE,16.476,3.7146,19680455995.0,5.6036,14.617,28009159184.6,0.35,9189386877.65,7935542726.05,2012-01-31,0.12159482758620697
4,000069.XSHE,12.5878,2.5616,41727214853.0,2.8729,10.9097,81247380359.0,0.271,8951453490.28,7091397989.13,2012-01-31,-0.0026808154146886697
  • 分析
  1. 初始化VarianceThreshold,指定阀值方差

  2. 调用fit_transform

def variance_demo():
    """
    删除低方差特征——特征选择
    :return: None
    """
    data = pd.read_csv("factor_returns.csv")
    print(data)
    # 1、实例化一个转换器类
    transfer = VarianceThreshold(threshold=1)
    # 2、调用fit_transform
    data = transfer.fit_transform(data.iloc[:, 1:10])
    print("删除低方差特征的结果:\n", data)
    print("形状:\n", data.shape)

    return None

返回结果:

            index  pe_ratio  pb_ratio    market_cap  \
0     000001.XSHE    5.9572    1.1818  8.525255e+10   
1     000002.XSHE    7.0289    1.5880  8.411336e+10    
...           ...       ...       ...           ...   
2316  601958.XSHG   52.5408    2.4646  3.287910e+10   
2317  601989.XSHG   14.2203    1.4103  5.911086e+10   

      return_on_asset_net_profit  du_return_on_equity            ev  \
0                         0.8008              14.9403  1.211445e+12   
1                         1.6463               7.8656  3.002521e+11    
...                          ...                  ...           ...   
2316                      2.7444               2.9202  3.883803e+10   
2317                      2.0383               8.6179  2.020661e+11   

      earnings_per_share       revenue  total_expense        date    return  
0                 2.0100  2.070140e+10   1.088254e+10  2012-01-31  0.027657  
1                 0.3260  2.930837e+10   2.378348e+10  2012-01-31  0.082352  
2                -0.0060  1.167983e+07   1.203008e+07  2012-01-31  0.099789   
...                  ...           ...            ...         ...       ...  
2315              0.2200  1.789082e+10   1.749295e+10  2012-11-30  0.137134  
2316              0.1210  6.465392e+09   6.009007e+09  2012-11-30  0.149167  
2317              0.2470  4.509872e+10   4.132842e+10  2012-11-30  0.183629  

[2318 rows x 12 columns]
删除低方差特征的结果:
 [[  5.95720000e+00   1.18180000e+00   8.52525509e+10 ...,   1.21144486e+12
    2.07014010e+10   1.08825400e+10]
 [  7.02890000e+00   1.58800000e+00   8.41133582e+10 ...,   3.00252062e+11
    2.93083692e+10   2.37834769e+10]
 [ -2.62746100e+02   7.00030000e+00   5.17045520e+08 ...,   7.70517753e+08
    1.16798290e+07   1.20300800e+07]
 ..., 
 [  3.95523000e+01   4.00520000e+00   1.70243430e+10 ...,   2.42081699e+10
    1.78908166e+10   1.74929478e+10]
 [  5.25408000e+01   2.46460000e+00   3.28790988e+10 ...,   3.88380258e+10
    6.46539204e+09   6.00900728e+09]
 [  1.42203000e+01   1.41030000e+00   5.91108572e+10 ...,   2.02066110e+11
    4.50987171e+10   4.13284212e+10]]
形状:
 (2318, 8)
  • 相关系数

    • 主要实现方式:
      • 皮尔逊相关系数
      • 斯皮尔曼相关系数
  • 皮尔逊相关系数(Pearson Correlation Coefficient)

  • 作用
    反映变量之间相关关系密切程度的统计指标
    pandas dataframe中的corr方法,默认就是皮尔逊相关系数
    2.公式计算案例

公式

皮尔逊相关系数

举例

  • 比如计算年广告费投入与月均销售额

年广告费投入与月均销售额

相关系数计算

计算相关系数
最终计算:

皮尔逊相关系数
结论是广告投入费与月平均销售额之间有高度的正相关关系。

  • 特点

相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:

  • 当r>0时,表示两变量正相关,r<0时,两变量为负相关
  • 当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
  • 当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
  • 一般可按三级划分:|r|<0.4为低度相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关
  • api
from scipy.stats import pearsonr
x : (N,) array_like
y : (N,) array_like Returns: (Pearson’s correlation coefficient, p-value)
  • 应用
from scipy.stats import pearsonr

x1 = [12.5, 15.3, 23.2, 26.4, 33.5, 34.4, 39.4, 45.2, 55.4, 60.9]
x2 = [21.2, 23.9, 32.9, 34.1, 42.5, 43.2, 49.0, 52.8, 59.4, 63.5]

pearsonr(x1, x2)

结果

(0.9941983762371883, 4.9220899554573455e-09)
  • 斯皮尔曼相关系数(Rank IC)
  • 作用:
    反映变量之间相关关系密切程度的统计指标
    pandas dataframe中的corr方法,需要指定参数
    2.公式计算案例

公式:

斯皮尔曼相关系数

n为等级个数,d为二列成对变量的等级差数

举例:

斯皮尔曼相关系数

  • 特点

    • 斯皮尔曼相关系数表明 X (自变量) 和 Y (因变量)的相关方向。 如果当X增加时, Y 趋向于增加, 斯皮尔曼相关系数则为正
    • 与之前的皮尔逊相关系数大小性质一样,取值 [-1, 1]之间

斯皮尔曼相关系数比皮尔逊相关系数应用更加广泛

  • api
from scipy.stats import spearmanr
  • 应用
from scipy.stats import spearmanr

x1 = [12.5, 15.3, 23.2, 26.4, 33.5, 34.4, 39.4, 45.2, 55.4, 60.9]
x2 = [21.2, 23.9, 32.9, 34.1, 42.5, 43.2, 49.0, 52.8, 59.4, 63.5]

spearmanr(x1, x2)

结果

SpearmanrResult(correlation=0.9999999999999999, pvalue=6.646897422032013e-64)
  • 主成分分析(PCA)
  • 定义

主成分分析

  • 高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量

  • 作用:使数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。

  • 应用:回归分析或者聚类分析

  • API

sklearn.decomposition.PCA(n_components=None)
将数据分解为较低维数空间
n_components:
小数:表示保留百分之多少的信息
整数:减少到多少特征
PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]
返回值:转换后指定维度的array

3.3 数据计算

[[2,8,4,5],
[6,3,0,8],
[5,4,9,1]]
from sklearn.decomposition import PCA

def pca_demo():
    """
    对数据进行PCA降维
    :return: None
    """
    data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

    # 1、实例化PCA, 小数——保留多少信息
    transfer = PCA(n_components=0.9)
    # 2、调用fit_transform
    data1 = transfer.fit_transform(data)

    print("保留90%的信息,降维结果为:\n", data1)

    # 1、实例化PCA, 整数——指定降维到的维数
    transfer2 = PCA(n_components=3)
    # 2、调用fit_transform
    data2 = transfer2.fit_transform(data)
    print("降维到3维的结果:\n", data2)

    return None

返回结果:

保留90%的信息,降维结果为:
 [[ -3.13587302e-16   3.82970843e+00]
 [ -5.74456265e+00  -1.91485422e+00]
 [  5.74456265e+00  -1.91485422e+00]]
降维到3维的结果:
 [[ -3.13587302e-16   3.82970843e+00   4.59544715e-16]
 [ -5.74456265e+00  -1.91485422e+00   4.59544715e-16]
 [  5.74456265e+00  -1.91485422e+00   4.59544715e-16]]

2.4 机器学习

1. 定义

选择合适的算法对模型进行训练

机器学习算法

2. 分类

根据数据集组成不同,可以把机器学习算法分为:

  • 监督学习

  • 无监督学习

  • 半监督学习

  • 强化学习

拓展阅读:Alphago进化史 漫画告诉你Zero为什么这么牛:http://sports.sina.com.cn/chess/weiqi/2017-10-21/doc-ifymyyxw4023875.shtml

2.1 监督学习
1. 简介
  • 输入数据是由输入特征值和目标值所组成。
    • 函数的输出可以是一个连续的值(称为回归),
    • 或是输出是有限个离散值(称作分类)。
2. 回归问题

例如:预测房价,根据样本集拟合出一条连续曲线。

房价预测

3. 分类问题

例如:根据肿瘤特征判断良性还是恶性,得到的是结果是“良性”或者“恶性”,是离散的。

肿瘤预测

3.2 无监督学习
  • 输入数据是由输入特征值组成,没有目标值

    • 输入数据没有被标记,也没有确定的结果。样本数据类别未知;
    • 需要根据样本间的相似性对样本集进行类别划分。

举例:

  • 聚类问题

无监督学习

有监督,无监督算法对比:

有监督和无监督算法对比

3.3 半监督学习
  • 训练集同时包含有标记样本数据和未标记样本数据。

举例:

监督学习训练方式:

监督学习训练方式

半监督学习训练方式
半监督学习训练方式

3.4 强化学习
1. 简介
  • 实质是make decisions 问题,即自动进行决策,并且可以做连续决策。

举例:

小孩想要走路,但在这之前,他需要先站起来,站起来之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一步。

小孩就是 agent,他试图通过采取行动(即行走)来操纵环境(行走的表面),并且从一个状态转变到另一个状态(即他走的每一步),当他完成任务的子任务(即走了几步)时,孩子得到奖励(给巧克力吃),并且当他不能走路时,就不会给巧克力。

主要包含五个元素:agent, action, reward, environment, observation;

强化学习

强化学习的目标就是获得最多的累计奖励。

监督学习和强化学习的对比

监督学习和强化学习对比

2. 独立同分布(i.i.d.)

独立同分布IID(independent and identically distributed)

2.1 简介

在概率统计理论中,如果变量序列或者其他随机变量有相同的概率分布,并且互相独立,那么这些随机变量是独立同分布。

在西瓜书中解释是:输入空间中的所有样本服从一个隐含未知的分布,训练数据所有样本都是独立地从这个分布上采样而得。

2.2 简单解释 — 独立、同分布、独立同分布

(1)独立:每次抽样之间没有关系,不会相互影响

举例:给一个骰子,每次抛骰子抛到几就是几,这是独立;如果要抛骰子两次之和大于8,那么第一次和第二次抛就不独立,因为第二次抛的结果和第一次相关。

(2)同分布:每次抽样,样本服从同一个分布

举例:给一个骰子,每次抛骰子得到任意点数的概率都是六分之一,这个就是同分布

(3)独立同分布:i.i.d.,每次抽样之间独立而且同分布

2.3 机器学习领域的重要假设

IID独立同分布即假设训练数据和测试数据是满足相同分布的,它是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。

2.4 目前发展

机器学习并不总要求独立同分布,在不少问题中要求样本数据采样自同一个分布是因为希望用训练数据集得到的模型可以合理的用于测试数据集,使用独立同分布假设能够解释得通。

目前一些机器学习内容已经不再囿于独立同分布假设下,一些问题会假设样本没有同分布。

3. 拟合

模型评估用于评价训练好的的模型的表现效果,其表现效果大致可以分为两类:过拟合、欠拟合。

在训练过程中当算法在某个数据集当中出现训练数据训练很好,误差也不大,但在测试集上面有问题,可能就出现了拟合问题。

1. 欠拟合

欠拟合
因为机器学习到的天鹅特征太少了,导致区分标准太粗糙,不能准确识别出天鹅。

欠拟合(under-fitting):模型学习的太过粗糙,连训练集中的样本数据特征关系都没有学出来。

2. 过拟合

过拟合

机器已经基本能区别天鹅和其他动物了。然后,很不巧已有的天鹅图片全是白天鹅的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅。

过拟合(over-fitting):所建的机器学习模型或者是深度学习模型在训练样本中表现得过于优越,导致在测试数据集中表现不佳。

3. 区别
  • 举例 – 判断是否是人
  • 欠拟合
    • 学习到的东西太少
    • 模型学习的太过粗糙
  • 过拟合
    • 学习到的东西太多
    • 学习到的特征多,不好泛化

2.5 模型评估

1. 简介

模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。

2. 分类

按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。

2.1 分类模型评估

肿瘤预测

  • 准确率
    • 预测正确的数占样本总数的比例。
  • 其他评价指标:精确率、召回率、F1-score、AUC指标等
2.2 回归模型评估

房价预测
方差vs偏差
在这里插入图片描述

均方根误差(Root Mean Squared Error,RMSE)

  • RMSE是一个衡量回归模型误差率的常用公式。 不过,它仅能比较误差是相同单位的模型。

均方根误差
举例:

假设上面的房价预测,只有五个样本,对应的
真实值为:100,120,125,230,400
预测值为:105,119,120,230,410

那么使用均方根误差求解得:
RMSE

其他评价指标:相对平方误差(Relative Squared Error,RSE)、平均绝对误差(Mean Absolute Error,MAE)、相对绝对误差(Relative Absolute Error,RAE)

2.3 聚类模型评估
1. SSE
  • 误差平方和SSE(Sum of the Squared Errors):计算k取某个值(2)时的误差值

聚类算法模型评估的误差平方和SSE

2. “肘”方法
  • 对于n个点的数据集,迭代计算k from 1 to n,分别计算误差值
  • 下降率突然变缓时即认为是最佳的k值
3. 轮廓系数法
  • 结合了聚类的凝聚度(Cohesion)和分离度(Separation)

轮廓系数法

4. CH系数
  • 类别内部数据的协方差越小越好,类别之间的协方差越大越好

3. 完整机器学习项目的流程

3.1 抽象成数学问题

明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。

这里的抽象成数学问题,指的明确可以获得什么样的数据,抽象出的问题,是一个分类还是回归或者是聚类的问题。

3.2 获取数据

数据决定了机器学习结果的上限,而算法只是尽可能逼近这个上限。

数据要有代表性,否则必然会过拟合。

而且对于分类问题,数据偏斜不能过于严重,不同类别的数据数量不要有数量级的差距。

而且还要对数据的量级有一个评估,多少个样本,多少个特征,可以估算出其对内存的消耗程度,判断训练过程中内存是否能够放得下。如果放不下就得考虑改进算法或者使用一些降维的技巧了。如果数据量实在太大,那就要考虑分布式了。

3.3 特征预处理与特征选择

良好的数据要能够提取出良好的特征才能真正发挥作用。

特征预处理、数据清洗是很关键的步骤,往往能够使得算法的效果和性能得到显著提高。归一化、离散化、因子化、缺失值处理、去除共线性等,数据挖掘过程中很多时间就花在它们上面。这些工作简单可复制,收益稳定可预期,是机器学习的基础必备步骤。

筛选出显著特征、摒弃非显著特征,需要机器学习工程师反复理解业务。这对很多结果有决定性的影响。特征选择好了,非常简单的算法也能得出良好、稳定的结果。这需要运用特征有效性分析的相关技术,如相关系数、卡方检验、平均互信息、条件熵、后验概率、逻辑回归权重等方法。

3.4 训练模型与调优

直到这一步才用到算法进行训练。现在很多算法都能够封装成黑盒供人使用。但是真正考验水平的是调整这些算法的(超)参数,使得结果变得更加优良。这需要对算法的原理有深入的理解。理解越深入,就越能发现问题的症结,提出良好的调优方案。

3.5 模型诊断

确定模型调优的方向与思路需要对模型进行诊断的技术。

过拟合、欠拟合 判断是模型诊断中至关重要的一步。常见的方法如交叉验证,绘制学习曲线等。过拟合的基本调优思路是增加数据量,降低模型复杂度。欠拟合的基本调优思路是提高特征数量和质量,增加模型复杂度。

误差分析 也是机器学习至关重要的步骤。通过观察误差样本全面分析产生误差的原因:是参数的问题还是算法选择的问题,是特征的问题还是数据本身的问题……

诊断后的模型需要进行调优,调优后的新模型需要重新进行诊断,这是一个反复迭代不断逼近的过程,需要不断地尝试, 进而达到最优状态。

3.6 模型融合

一般来说,模型融合后都能使得效果有一定提升。而且效果很好。

工程上,主要提升算法准确度的方法是分别在模型的前端(特征清洗和预处理,不同的采样模式)与后端(模型融合)上下功夫。因为他们比较标准可复制,效果比较稳定。而直接调参的工作不会很多,毕竟大量数据训练起来太慢了,而且效果难以保证。

3.7 上线运行

这一部分内容主要跟工程实现的相关性比较大。工程上是结果导向,模型在线上运行的效果直接决定模型的成败。 不单纯包括其准确程度、误差等情况,还包括其运行的速度(时间复杂度)、资源消耗程度(空间复杂度)、稳定性是否可接受。

只有多实践,多积累项目经验,才会有更深刻的认识。

4. 使用

4.1 库的安装

Matplotlib、Numpy、Pandas等库,统一版本号在环境中使用,将所有的库及其版本放到了文件requirements.txt当中,然后统一安装

新建一个用于人工智能环境的虚拟环境

mkvirtualenv ai
matplotlib==2.2.2
numpy==1.14.2
pandas==0.20.3
tables==3.4.2
jupyter==1.0.0

注意:

  • 每个包安装的过程中,尽量指定稳定版本进行安装

使用pip命令安装

pip3 install -r requirements.txt

4. 应用

4.1 Azure平台

1. 简介

Azure平台

Azure Machine Learning(简称“AML”)是微软在其公有云Azure上推出的基于Web使用的一项机器学习服务,机器学习属人工智能的一个分支,它技术借助算法让电脑对大量流动数据集进行识别。这种方式能够通过历史数据来预测未来事件和行为,其实现方式明显优于传统的商业智能形式。

微软的目标是简化使用机器学习的过程,以便于开发人员、业务分析师和数据科学家进行广泛、便捷地应用。

这款服务的目的在于“将机器学习动力与云计算的简单性相结合”。

AML目前在微软的Global Azure云服务平台提供服务,用户可以通过站点:https://studio.azureml.net/ 申请免费试用。

Azure平台

2. Azure机器学习实验

  • 实验目的:了解机器学习从数据到建模并最终评估预测的整个流程。
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值