2-复杂网络的统计描述

目录

基本静态集合特征

度分布

泊松分布

幂律分布

累计度分布

小结

路径长度

聚类系数

节点聚类系数

网络聚类系数

小结

连通分量

无向网络静态特征

联合度分布和度-度相关性

联合度分布

度-度相关性

聚类系数分布和聚-度相关性

介数、核数和紧密度

介数

核数

紧密度

中心性

度中心性

介数中心性

接近度中心性

特征向量中心性

PageRank值

其他特征

网络结构熵

特征谱

富人俱乐部特性


基本静态集合特征

度分布

度分布常用P(k)表示,规则网络的度分布集中在单一尖峰,为Delta分布

泊松分布

完全随机网络的度分布类似于泊松分布

幂律分布

具有幂律度分布的网络成为无标度网络,满足P(k)\propto k^{-\gamma}

幂律分布函数是为以满足“无标度条件”的概率分布函数

累计度分布

表示度不小于k的节点的概率分布,与度分布的关系

P_k=\sum_{i=k}^{\infty} P(i)

小结

幂律分布曲线比泊松分布曲线下降地要缓慢得多

路径长度

最短路径,网络直径,平均路径长度

聚类系数

节点聚类系数

定义为节点v_ik_i个邻居节点之间存在的边数E_i和总的可能边数的比值

C_i=\frac{E_i}{C_{k_i}^2}

网络聚类系数

网络聚类系数就是所有节点聚类系数的平均值

C=\frac{1}{N}\sum_i C_i

小结

在部分网络中,随着网络规模的增加,聚类系数会趋于一个常值,证明这些实际复杂网络并不是随机的,人以类聚,物以群分

连通分量

一个包含网络有限部分的无向子图,连通分量内部任意两个节点之间均有路径,且不存在可以连接到其他子图的边。图中节点数量最多的连通分量被称为最大连通分量

无向网络静态特征

联合度分布和度-度相关性

联合度分布

定义:从无向网络中随机选择一条边,该边两个节点的度值分别为k_1,k_2的概率

P(k_1,k_2)=M(k_1,k_2)/M

其中,M(k_1,k_2)为这样的边的数目,M为网络总边数

联合度分布所包含的拓扑信息更为全面,可以推演出度分布(具体自查)

度-度相关性

若度大的节点倾向于和度大的节点链接,则网络为度-度正相关的,也被称作同配的;

若度大的节点倾向于和度小的节点链接,则网络为度-度负相关的,也被称作异配的

基于最近邻平均度值

节点v_i的最近邻平均度值定义为

k_{nn,i}=\frac{\sum_ja_{ij}k_j}{k_i}

在此基础上,所有度值为k的节点最近邻平均度值的平均值

k_{nn}(k)=\frac{\sum_{i|k_i=k}k_{nn,i}}{N*P(k)}

k_{nn}(k)为增函数,则网络为同配网络;反之,则网络为异配网络

基于Pearson相关系数

又被叫做网络的同配性系数,主要思想是:所有的边都对应一个边序列,只需要分析边两端节点度的Pearson相关系数就可以描述度-度相关性

(41条消息) 相关系数(用来衡量两变量间相关关系的大小)_相关性系数大小与相关强弱_Yuerya.的博客-CSDN博客

聚类系数分布和聚-度相关性

介数、核数和紧密度

介数

节点介数,边介数

核数

反复去掉度值小于k的节点及其连线后所剩余的子图被称为该图的k-核,该子图的节点数就是该核的大小

若一个节点存在于k-核,而在(k+1)-核中被移去,则该节点核数为k

紧密度

节点通过最短路径与其他节点的接近程度,定义如下

C_i^c=\frac{1}{L_i}=\frac{n-1}{\sum_j d_{ij}}

紧密度指标刻画了该节点到达网络中其他节点的难易程度

中心性

度中心性

节点度中心性指的是节点在与其直接相连的邻居节点当中的中心程度

C_D(v_i)=k_i/(N-1)

网络度中心性侧重于节点在整个网络的中心程度,表征整个网络的集中程度(围绕一个节点或一组节点),易知,星型网络的网络度中心性最大,在星型网络中计算H

H=\sum_i[C_D(u_{max})-C_D(u_i)]

C_D(G)=\frac{1}{H}\sum_i[C_D(v_{max})-C_D(v_i)]

因此,上式可以优化如下

C_D(G)=\frac{1}{N-2}\sum_i[C_D(v_{max})-C_D(v_i)]

介数中心性

节点介数中心性

C_B(v_i)=2B_i/[(N-1)(N-2)]

和网络度中心性类似,网络介数中心性

C_B(G)=\frac{1}{N-1}\sum_i[C_B(v_{max})-C_B(v_i)]

接近度中心性

节点接近度中心性

C_C(v_i)=\frac{N-1}{\sum_j d_{ij}}

该方法只能用于计算连通图,重新定义节点接近度中心性并将其扩展到非连通图

C_C(v_i)=\sum_j 2^{-d_{ij}}

和网络度中心性类似,网络接近度中心性

C_C(G)=\frac{2N-3}{(N-1)(N-2)}\sum_i[C_C(v_{max})-C_C(v_i)]

特征向量中心性

对于节点v_i,令其中心性分值正比于连接到它的所有节点的中心性分值的总和

x_i=\frac{1}{\lambda}\sum_j a_{ij}x_j

写成矩阵形式

Ax=\lambda x

故节点特征向量中心性即为邻接矩阵A对应特征值的归一化

PageRank值

其他特征

网络结构熵

基于度分布提出,衡量网络的有序和无序程度

设网络中节点v_i的度为k_i,则其重要度可以定义为

I_i=\frac{k_i}{\sum_j k_j}

不考虑度为0的节点,网络结构熵定义如下

E=-\sum_i I_i*lnI_i

为消除节点数目对网络结构熵的影响,对网络结构熵进行归一化

\hat E=\frac{E-E_{min}}{E_{max}-E_{min}}

其中,当网络完全均匀时,E_{max}=lnN;星型网络中,E_{min}=ln[4(N-1)]/2

特征谱

定义谱密度,其中\lambda_i表示邻接矩阵A从大到小排列的特征值

\rho(\lambda)=\frac{1}{N}\sum_i \delta(\lambda-\lambda_i)

易知\rho(\lambda)是一种谱密度,因为满足

\int_{-\infty}^{+\infty}\rho(\lambda)d\lambda=1

其p阶矩

M_p=\frac{1}{N}\int_{-\infty}^{+\infty} \lambda^p \rho(\lambda)d\lambda

可以表示成

M_p=\frac{1}{N}\sum_i \lambda_i^p=\frac{1}{N}tr(A^p)

发现,N*M_p即可表示网络中存在的长为p的闭合回路数目,值得注意的是,由于一个三角形中有6条闭合回路,因此N*M_p/6就是网络中三角形的数目

富人俱乐部特性

网络中少量节点具有大量边,这样的节点被称为“富节点”,彼此相互连接构成“富人俱乐部”

定义富人俱乐部连通性为网络中前r个度最大的节点之间实际存在的边数和可能存在边数的比值

\phi(r)=\frac{L}{C_r^2}

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值